
Risk-Based Authentication for OpenStack: A Fully Functional
Implementation and Guiding Example

Data/Toolset paper

Vincent Unsel
H-BRS University of Applied Sciences

Sankt Augustin, Germany
vincent.unsel@h-brs.de

Stephan Wiefling
Ruhr University Bochum

Bochum, Germany
stephan.wiefling@rub.de

Nils Gruschka
University of Oslo
Oslo, Norway

nilsgrus@ifi.uio.no

Luigi Lo Iacono
H-BRS University of Applied Sciences

Sankt Augustin, Germany
luigi.lo_iacono@h-brs.de

ABSTRACT
Online services have difficulties to replace passwords with more
secure user authentication mechanisms, such as Two-Factor Au-
thentication (2FA). This is partly due to the fact that users tend
to reject such mechanisms in use cases outside of online banking.
Relying on password authentication alone, however, is not an op-
tion in light of recent attack patterns such as credential stuffing.
Risk-Based Authentication (RBA) can serve as an interim solution
to increase password-based account security until better methods
are in place. Unfortunately, RBA is currently used by only a few
major online services, even though it is recommended by various
standards and has been shown to be effective in scientific studies.
This paper contributes to the hypothesis that the low adoption
of RBA in practice can be due to the complexity of implementing
it. We provide an RBA implementation for the open source cloud
management software OpenStack, which is the first fully functional
open source RBA implementation based on the Freeman et al. algo-
rithm, along with initial reference tests that can serve as a guiding
example and blueprint for developers.

CCS CONCEPTS
• Security and privacy→Authentication;Access control;Web
application security; Usability in security and privacy; Intru-
sion detection systems; • Computer systems organization →
Cloud computing; • Software and its engineering→ Designing
software.

KEYWORDS
Risk-Based Authentication, Implementation Challenges, OpenStack

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
Thirteenth ACM Conference on Data and Application Security and Privacy (CODASPY
’23), April 24–26, 2023, Charlotte, NC, USA, https://doi.org/10.1145/3577923.3583634.

ACM Reference Format:
Vincent Unsel, Stephan Wiefling, Nils Gruschka, and Luigi Lo Iacono. 2023.
Risk-Based Authentication for OpenStack: A Fully Functional Implementa-
tion and Guiding Example: Data/Toolset paper. In Proceedings of the Thir-
teenth ACM Conference on Data and Application Security and Privacy (CO-
DASPY ’23), April 24–26, 2023, Charlotte, NC, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3577923.3583634

1 INTRODUCTION
Passwords are still the predominant authenticationmethod for most
online services [27], despite their long-known weaknesses [21] and
the continuous emergence of new attacks such as credential stuffing
and password spraying [1]. To effectively protect their users, online
services must use alternative or additional measures to passwords.
Other authentication factors using special user-owned devices or
physical biometrics, are generally impractical for online services, as
they require additional hardware and active user enrollment. This is
why they are generally not used in practice [10]. The composition
of two different user authentication factors, usually a password
combined with something the user possesses or is, suffers from the
same acceptance problems. Apart from few applications such as
online banking [8, 28, 33], Two-Factor Authentication (2FA) [25] is
not yet widely accepted by users in practice either [19, 24, 31].

Risk-Based Authentication (RBA) [36] is an online-service-side
complement to authentication systems such as password-based
authentication that does not require direct user interaction. The
user performs the log-in process simply by entering their login
credentials (i.e., username and password). In many cases this is
sufficient to authenticate to the service. Only when the online
service’s RBA component detects a deviation from the usual log-in
behaviour (e.g., different user location), a further authentication
factor is requested [33]. This is also true when a correct username-
password combination is provided, i.e., an attacker used leaked
credentials. Therefore, to keep it with the security principle of “good
security now” [11], RBA can be used as an immediate additional
security measure for password-protected user accounts in online
services. It enhances the security of such online accounts right
away until alternative and more secure authentication methods
become established in the mainstream.

1

https://orcid.org/0000-0001-5357-3599
https://orcid.org/0000-0001-7917-6065
https://orcid.org/0000-0001-7360-8314
https://orcid.org/0000-0002-7863-0622
https://doi.org/10.1145/3577923.3583634
https://doi.org/10.1145/3577923.3583634

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Vincent Unsel, Stephan Wiefling, Nils Gruschka, and Luigi Lo Iacono

Research Hypothesis. Although the use of RBA is recommended
in the literature [33–35] and in national policies [4, 5, 13, 23], the
adoption of RBA in practice is still very limited [12, 33]. Recent
research found that 78% of 235 popular online services inside the
Tranco 5K [17] still do not use any form of RBA [12]. As Internet
users have an average of 92 to 130 online accounts [16], services
of the major Internet companies protect only a fraction of these
accounts with RBA. One reason for this low RBA adoption rate
could be a lack of guidance on the implementation of RBA. Insights
from the literature show that effective RBA implementations can be
very complex [6, 9, 35]. Therefore, we expect that many developers
cannot estimate the challenges they face when implementing RBA
in their online services. Furthermore, there are almost no measures
available that could help developers with the implementation or
testing of a custom RBA implementation.

Contributions. To close this gap, we provide the following: (i) We
introduce a conceptual model of RBA that provides a generic view
on how to implement and integrate RBA in online services. (ii) We
then instantiate the model as a fully functional open source RBA
plug-in for the cloud computing software OpenStack. To the best
of our knowledge, this is the first open RBA implementation based
on the algorithm of Freeman et al. [9]. (iii) Finally, we provide a
reference test and reference values based on real world login data
that can be used to test RBA implementations based on the Freeman
et al. algorithm.

Overall, our work aims to help developers, administrators, and
service owners to strengthen password-based authentication by
providing guidance on how to implement, integrate, and test RBA
for their online services. This should make it easier to put RBA
into practice. Our code repository should also serve as a research
environment to study how such example implementations help
developers to bring security measures into software products.

2 RISK-BASED AUTHENTICATION (RBA)
Figure 1 shows the common architecture of an RBA system [9, 34,
36], typically used in addition to password-based authentication.
The system logs contextual features (e.g., network and browser in-
formation) for each successful login attempt and compares them to
the previously observed feature values. In the case of RBA-enhanced
password authentication, this means that access to the service is
only granted if the login context is not too different from the previ-
ously observed ones. This comparison of the current login context
with a recorded history of login contexts is done by calculating a
so-called risk score. The score is a number indicating the deviation
from the expected values, i.e., the higher the number, the higher the
risk of account takeover. Only if this risk score is below a certain
threshold, the whole login process behaves like regular password-
based authentication from the user’s perspective. If the threshold
is exceeded, the RBA-based authentication system requires a re-
authentication step, i.e., requesting a second authentication factor.
Typically, this factor is a verification code sent to a registered email
address or phone number [12, 36]. Only in case this additional factor
is successfully verified, the user is authenticated to the service. In
case of a very high risk score, e.g., when we are very sure that it is
an automated attack, the online service can block access. Although

Login Unsuspicious
(Low Risk Score)

Login Deceptive
(High Risk Score)

Login Suspicious
(Medium Risk Score)

Additional Factor
Verified

Additional Factor
Disapproved

Online Service

User Authentication

Additional Factor
Verification

Login Attempt

Login With
Additional Factor

Calculate Risk Score

Login

History

Figure 1: Overview of an RBA system, showing the communi-
cation between user and online service in different scenarios
(low, medium, and high risk)

this use case is frequently mentioned in literature, it seems to be
uncommon in practice [12, 36].

The contextual features used in the risk score calculation can
be defined by the person configuring the RBA system, and can
vary from network (e.g., IP address or RTT) and device (e.g., user
agent string), to behavioral biometric information (e.g., login time).
Related research suggests that network-based (IP address) and de-
vice information (user agent string) are sensible features providing
high security with high usability in practice [9, 34, 36]. When used
in combination, these features protected against sophisticated at-
tackers that know the users’ passwords, locations, and devices,
without legitimate users noticing any differences in the online ser-
vice’s behavior [34]. Therefore, we focused on these features in our
OpenStack implementation.

To the best of our knowledge, Freeman et al. [9] published the
first RBA algorithm for computing a risk score for a login attempt.
The algorithm was also suspected to be used in some form at the
popular online services Google, Amazon, and LinkedIn [34]. As it
also showed good performance in a practical evaluation and out-
performed an algorithm used in the open source single sign-on
solution OpenAM [34], we selected this algorithm for our imple-
mentation. The algorithm calculates the risk score 𝑆 for a user 𝑢
and a given feature set 𝐹𝑉 = (𝐹𝑉 1, . . . , 𝐹𝑉𝑑) with 𝑑 features as:

𝑆𝑢 (𝐹𝑉) =
(
𝑑∏

𝑘=1
𝑝 (𝑎𝑡𝑡𝑎𝑐𝑘 |𝐹𝑉𝑘) 𝑝 (𝐹𝑉𝑘)

𝑝 (𝐹𝑉𝑘 |𝑢, 𝑙𝑒𝑔𝑖𝑡)

)
𝑝 (𝑢 |𝑎𝑡𝑡𝑎𝑐𝑘)
𝑝 (𝑢 |𝑙𝑒𝑔𝑖𝑡) (1)

In the formula, we use the probabilities 𝑝 (𝐹𝑉𝑘) for the fea-
ture value appearing in the global login history of all users, and
𝑝 (𝐹𝑉𝑘 |𝑢, 𝑙𝑒𝑔𝑖𝑡) for the feature value being used by the legitimate
user trying to sign in. For some features, comparison of occur-
rence rarely result in an exact match. For example, nowadays, IP
addresses are typically assigned dynamically and devices (espe-
cially mobile devices) are roaming in different networks. In these
cases, when using a unseen feature, 𝑝 (𝐹𝑉𝑘 |𝑢, 𝑙𝑒𝑔𝑖𝑡) would be zero,
resulting to an undefined value. To compensate for such frequently

2

Risk-Based Authentication for OpenStack: A Fully Functional Implementation and Guiding Example CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

changing feature values, sub-feature derivation techniques can be
applied to some features as so-called smoothing [9]. Therefore, the
IP address feature can be split at three granular levels. Including
the Autonomous System Number (ASN), to which the address be-
longs, smooths the unseen feature value to the granularity level
of the Internet Service Provider (ISP)’s ASN range [14]. The third
and least granular level is the corresponding country to even com-
pensate frequent rotations of different Access Points (APs) [15].
Likewise for smoothing the User-Agent (UA) string, sub-features
are extracted to include browser, operating system and device in-
formation into the risk score. These derived sub-features are aggre-
gated in the probability calculation using a linear interpolation [9],
in which the history is divided into all entries containing each
sub-feature value to estimate the originated feature value. Further-
more, 𝑝 (𝑢 |𝑎𝑡𝑡𝑎𝑐𝑘) estimates how likely a user is being attacked and
𝑝 (𝑢 |𝑙𝑒𝑔𝑖𝑡) how likely the user is signing in on this online service,
i.e., 𝑝 (𝑢 |𝑙𝑒𝑔𝑖𝑡) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑢𝑠𝑒𝑟 𝑙𝑜𝑔𝑖𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑎𝑙𝑙 𝑙𝑜𝑔𝑖𝑛𝑠
. Some online service might

also have additional attack data, e.g., a list of IP addresses that were
previously used in attacks. In this case, 𝑝 (𝑎𝑡𝑡𝑎𝑐𝑘 |𝐹𝑉𝑘) estimates
how likely the feature value has been previously seen in attacks. Re-
lated work indicates, however, that attack data should be used with
caution or not at all, as it also can negatively influence the RBA sys-
tem’s security and usability properties [35]. When not using attack
data, this term can be neglected, i.e., 𝑝 (𝑎𝑡𝑡𝑎𝑐𝑘 |𝐹𝑉𝑘) = 1 [34, 35, 38].

3 RELATEDWORK
The Freeman et al. paper [9] can be considered the academic birth of
RBA. Follow-up academic research provides scientific evidence on
useful features [2, 3, 34, 36], user perspective [7, 18, 33, 37], suitable
RBA algorithms [34, 38], and a large-scale evaluation of effective
RBA protection based on login data of a real online service [35].
To the best of our knowledge, there is no research addressing the
reasons for the low adoption of RBA in practice or supporting mea-
sures for software developers. When analyzing the repositories
of relevant open source online software, and identity and access
management (IAM) solutions, we found that there are virtually
no projects among them that contain RBA capabilities. The IAM
software OpenAM1 is one notable exception. Still, its RBA imple-
mentation is very limited in terms of monitored features and risk
score calculation. The feature set only includes the IP address, and
the current IP address is only compared with those already included
in the login history. This approach does not meet the security or
usability goals that RBA can otherwise provide [34–36].

Achieving a functional RBA implementation is a very complex
task, as it requires a variety of skills and knowledge. To even com-
plicate this, the available scientific literature offers little support for
implementation. For instance, the paper by Freeman et al. presents
the theory and the algorithm, but many implementation-relevant
aspects are left unconsidered and the authors themselves do not
provide a reference implementation. The lack of a reference im-
plementation of the Freeman et al. algorithm has since been re-
solved [32], but this is still insufficient as a developer support. The
availability of test cases with corresponding test data is often an-
other necessary prerequisite. Therefore, to facilitate the adoption
of RBA, we provide a fully functional implementation of RBA in a
1https://www.openidentityplatform.org/

relevant open source software project. The implementation puts
all the necessary pieces together to provide a complete guiding
example, including testing capabilities.

4 OPENSTACK
OpenStack2 is an open source software suite for building cloud
computing platforms. It offers different Infrastructure-as-a-Service
(IaaS) cloud services, primarily virtual machines (VM) and storage
services. Commercial cloud service providers can use OpenStack
to build public cloud platforms and organisations can build private
clouds with it.

The OpenStack software is designed as a modular framework
composed of different application services. As a central component
for IaaS systems, the Nova compute service manages and hosts
virtual instances. Users can administrate Nova through the Hori-
zon web dashboard. In addition to Nova, a minimal configuration
of OpenStack contains the following modules: the image service
Glance to discover, register, and retrieve VM images; the Place-
ment service to enable other services track their own resources;
the Software Defined Network (SDN) component Neutron to create
and attach virtual network infrastructure devices to instances from
other modules; and the Keystone identity service to enable user
authentication and access management.

Relevant service components for integrating RBA functional-
ity are Horizon and Keystone. The Horizon web dashboard allows
administrators and users to access and manage cloud computing
resources. Authentication requests are delegated to the correspond-
ing identity management service. Horizon offers two possibilities
to render the received authentication result in the frontend: When
the login credentials were incorrect or the user has to provide an
additional additional factor, it can display this information as an
error, i.e., a red box in the login form. When access was granted,
Horizon redirects to the user’s dashboard.

Keystone is the access control component for the framework’s
services. It can identify users and verify their authorization on man-
aged assets. On successful user authentication, Keystone issues a
unique login session identifier (session token) to the user. Keystone
then constantly verifies whether this token is valid and whether
user actions are within their permitted scope.

We chose OpenStack as the example software for providing an
RBA implementation. We made this decision because many clouds
are built on OpenStack [20]. They can therefore immediately benefit
from increased account security by installing and using RBA. In
addition, OpenStack has a modern microservices-based architecture
and built-in extensibility. For this reason, RBA-related source codes
are highly decoupled from the other components and can be read
and understood with limited knowledge of the overall system. With
Python as the underlying programming language, which is also
the most popular programming language [29], the RBA source
code should be accessible and comprehensible to most software
developers.

5 OPENSTACK RBA EXTENSION
To enable RBA in OpenStack, we must extend the Horizon frontend
component with RBA-specific login user interfaces and implement
2https://www.openstack.org/

3

https://www.openidentityplatform.org/
https://www.openstack.org/

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Vincent Unsel, Stephan Wiefling, Nils Gruschka, and Luigi Lo Iacono

Suspicious

Verified

Disapproved

Horizon Keystone

Authentication API

generate_passcode()

POST

verify_passcode()

UNAUTHORIZED

CREATEDFOUND
 create_entry()

risk_score()

store_credentials()

get_credentials()

delete_credentials()

Success

Failure

GET
OK

OK

Controller Node

Login

History

 get_history()POSTPOST

UNAUTHORIZED

CREATEDFOUND
 create_entry()

User Authentication

OK
POST

Initial Login

UNAUTHORIZED

Passcode
Submission

send_passcode()

OK

Figure 2: Authentication Flow in OpenStack using the RBA
Extension

the risk score calculation in the Keystone backend component.
We leveraged OpenStack’s modular microservice architecture and
extension interfaces and developed two extension plug-ins for these
two components as follows. They work at least with the Wallaby
release up to the actual released stable series Zed.

5.1 Horizon RBA Extension (Frontend)
The Horizon RBA plug-in3 extends the default password-based
authentication by unobtrusively collecting the client’s RBA features
at the login screen. In the current version, the IP address, user agent
string, and the Round-Trip-Time (RTT) features are supported by
the extension. We chose these features as previous research identi-
fied them as the most effective ones to identify users [34, 35]. The
first two features are obtained directly from the client Hypertext
Transfer Protocol (HTTP) request. The last one required an addi-
tional Horizon extension that uses the asynchronous WebSockets
protocol for measuring the transmission time of messages from
the Horizon service to the client and back. The RTT is a strong
and privacy-preserving indicator to distinguish legitimate login
attempts from those spoofing the “correct” location using an Virtual
Private Network (VPN) with an egress point in the same region as
the legitimate user [34, 38]. To compensate the network delay jitter,
these round-trip measurements are performed five times, and the
shortest time measurement is selected as the RTT feature in RBA
authentication [34].

Figure 2 shows the RBA-enabled authentication flow in Open-
Stack. When the user performs a login attempt, Horizon forwards
the RBA features together with the password to the authentication
API of Keystone. The RBA evaluation (see Figure 1) can have three
different results where the Horizon frontend initiates different ac-
tions. These are (i, success) the user is authenticated, (ii, failure)

3Available online at https://github.com/das-group/password-rba-horizon

Figure 3: Implemented re-authentication prompt in the Hori-
zon frontend for a suspicious login attempt

the authentication has failed, and (iii, suspicious) the RBA feature
verification calculated a suspicious risk score that requires a re-
authentication factor to be requested. In our implementation, we
use a verification code (passcode) generated by a HMAC-Based One-
Time Password (HOTP) [22] generator, and sent over a separate
channel to the user as a re-authentication factor. We chose email
based verification with a six digit code in subject line and body, as
this variant performed best in a user study [33]. Also, verification
codes are common practice in real-world RBA systems [12, 36].

In the suspicious case, the login dialog requests the verification
code that was sent to a previously deposited user contact address,
e.g., email address (see Figure 3). We based the dialog and verifi-
cation email on common patterns found in RBA deployments of
popular online services, and recommendations of an email verifi-
cation study [33, 37]. We did this to create an RBA user interface
that was tested successfully in multiple usability studies. To be
compatible with different contact points in the future (e.g., phone
number), we changed the term “email address” to “contact address”.
For technical reasons, the user’s contact address was not shown in
the dialog (see the discussion in Section 7). The subsequent login
attempt using the RBA method now contains the verification code
instead of features and it needs to match the verification code issued
by Keystone to succeed.

5.2 Keystone RBA Extension (Backend)
The Keystone RBA plug-in4 implements the backend RBA evalua-
tion based on the features delivered by the Horizon RBA frontend,
the stored login history, and the Freeman et al. algorithm (see Fig-
ure 2).

Data Collection. The RBA features received at the beginning of a
login attempt are validated and normalized to ensure comparability
during further risk score processing. This includes sub-feature ex-
traction to extend the acceptance range for unseen feature values.

4Available online at https://github.com/das-group/keystone-rba-plugin

4

https://github.com/das-group/password-rba-horizon
https://github.com/das-group/keystone-rba-plugin

Risk-Based Authentication for OpenStack: A Fully Functional Implementation and Guiding Example CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

Finally, the RTT feature is normalized by rounding to the nearest
ten milliseconds, as suggested by related work [34].

Risk Score Calculation. Our implemented risk score algorithm
uses the derived feature values with a linear interpolation probabil-
ity estimation, as proposed by Freeman et al. [9], for the calculation
of appearance in the user’s login history (see Section 2). Although
smoothing including sub-features is possible for the probability
estimation on the global history, the decision to compare only the
originated features was made to limit the needed resources. Oth-
erwise, it would be necessary to either keep a consistent copy of
the whole history in-memory or query all entries from the login
history database for each login attempt. Both variants seemed not
acceptable with a growing user base. For the same reason, a size
limit is configurable to even cap the amount of entries for each user.
When the limit is exceeded, the oldest entry will be replaced in
favor of a new one. Instead of narrowing down entries of the whole
login history, only the currently attempting user’s entries are used
and requested from the database. The other estimations can operate
on lookup dictionaries or hash tables containing the actual value
occurrences in the login history, as suggested by related work [35].

Furthermore, the risk score can optionally include the attack
probability for a given IP address. We realized this as a third party
reputation system, as proposed by Freeman et al. [9], by using a
list containing recently reported malicious network addresses [30].
Such lists are common for firewall services to automatically block
access to protected systems. In our case, we used the IP reputa-
tion database from the FireHOL project [30], that provides a daily
updated collection from several sources.

Risk Classification. Three different results can be derived from
the calculated risk score (see Section 5.1). Therefore, two thresh-
old values can be configured, allowing to adjust the occurrence
of theses cases. Risk scores below the lower threshold are consid-
ered successful authentication and a new entry with the attempt’s
features is stored in the database.

By exceeding the lower threshold, but still below the upper one,
the response indicates Horizon to request an additional verification
code. The RBA extension sends the verification code to the regis-
tered user via email by default, but this behavior can be changed
by setting a different messenger in the configuration (e.g., to send
text messages to mobile phone numbers).

In case even the upper threshold was exceeded, the authentica-
tion attempt is rejected. Nevertheless, it is quite common in practice
to disable the rejection case [12, 36] and let RBA request the re-
authentication factor only. Our implementation supports this by
setting the rejection threshold to an unreachable high value.

Re-Authentication Request. In the re-authentication case, Hori-
zon will include the verification code entered by the user in the
following authentication request to Keystone. If the transmitted
verification code could be verified, then a new record will be added
to the login history. These previously labeled suspicious feature
values will now be taken into account as “already seen” on further
login attempts.

5.3 Extending the Feature Set
We integrated the IP address, user agent string, and RTT into the
RBA extension, as they proved to be effective to identify users [34,
35]. Nevertheless, developers can change the feature set collected
by the RBA extension in the code.

To achieve this, they first need to change the list of collected
features and their values by the Horizon RBA extension. As Horizon
sends these values to Keystone, they also need to adjust this feature
set in the Keystone RBA extension. Furthermore, in case of new
features beside the three implemented ones, they need to write and
connect new validation functions to evaluate the new features.

After that, they need to adjust the two risk score thresholds to
values reflecting the risk score values using the new feature set.
Adding and removing new features will change the potential range
of risk scores, as the amount of multiplications, mostly consisting
of probabilities 𝑝 with {𝑝 ∈ R | 0 <= 𝑝 < 1}, will change (see
Equation 1). Therefore, we can assume that more features will likely
lower the risk scores values. To get an idea of potential values, a
reference test can be helpful.

6 REFERENCE TEST
In order to test a self-developed RBA implementation, some kind of
reference test is required. Such a test could provide risk score val-
ues obtained by an openly available RBA reference implementation
and an openly available login data set. Developers could calculate
the risk scores based on the login data set using their own RBA
implementation and compare the calculated risk scores to those
of the reference implementation. Fortunately, both a reference im-
plementation of the Freeman et al. algorithm [32] and a RBA login
data set [35] got recently publicly available.

To obtain a reference test from the available resources, one must
first determine the reference risk scores. The RBA reference imple-
mentation can be used for this purpose. It makes use of the Python
pandas [26] library that is often used in big data and data science
use cases. The reference implementation operates directly on a pan-
das DataFrame object that is initialized with the successful login
attempts from the login data set. It provides a test function that
calculates risk scores based on all preceding entries at a specified
starting point. The result of the test function call contains all risk
scores in the interval between the starting entry and the amount
of entries to be considered. Note that the reference implementation
allows to calculate risk scores just for slices of the data set. This is a
useful feature in early development and testing stages, as it allows
to focus the assessments on parts of the data set and reduce high
computational costs. The feature also enables scaling the risk score
computation across multiple servers and processor cores, e.g., for
high performance computing clusters.

The results do not contain risk scores of login attempts by so far
unseen users, as these would be zero anyway. Hence, as soon as a
user has logged in more than once, the corresponding risk score
is calculated and becomes part of the output. Table 1 shows the
first calculated risk scores when going through the data set from
the beginning. The 64th entry in the data set represents the first
recurring login attempt of the same user. Thus, it is the first output
of the test function of the reference implementation.

5

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Vincent Unsel, Stephan Wiefling, Nils Gruschka, and Luigi Lo Iacono

Table 1: Sample of selected risk scores calculated sequentially
for successful login attempts of the RBA data set and com-
pared to the risk scores calculated using the Keystone plugin.

Login Attempt
Global User Reference Risk Score Plug-in Risk Score

64 2 0.0105382376 0.0105382376
67 2 0.0005499333 0.0005499333
89 2 0.0024253951 0.0024253951
...
10000 2 0.0184015408 0.0184015408
10004 2 0.0000824648 0.0000824648
10008 4 0.0063803620 0.0063803620
10012 3 0.0002190521 0.0002190521
10013 9 0.0000297278 0.0000297278
10014 2 0.0035949540 0.0035949540
...
29328 4 0.0009868327 0.0009868327
29331 3 0.0000687314 0.0000687314
29333 3 0.0000862387 0.0000862387

As shown in the table, the implementation of the risk score algo-
rithm in the OpenStack RBA plug-in calculates the same values as
the reference implementation. It should be noted that the reference
implementation uses the IP address and user agent string and their
sub-features ASN, country code, browser name, browser version,
operating system name, operating system version and device type
from the data set to calculate the risk values. As the validation,
normalization, and sub-feature derivation process could result in
deviations of feature values from the data set entries used by the
implementation to be tested, it is important to circumvent these
processes and calculate the risk scores directly on the same feature
values contained in the data set.

7 DISCUSSION
Our guiding example shows that integrating RBA into software
projects can be rather complex. We outline some of the issues we
faced during implementation in the following.

Showing the Contact Address in Horizon. RBA dialogs typically
show the user’s email address in censored form [33, 37]. This could
help users to determine which email address received the notifica-
tion while reducing attack surface for attackers, in case they do not
know the full email address of the target. Unfortunately, the current
code base of Horizon makes it difficult to forward the user’s contact
address to the dialog. The only way to forward information from the
plugin logic to the user interface seems to be via Python exceptions,
where the contact address has to be attached to the error message.
However, this might entail security and compatibility issues, as
we have to parse the contact address correctly while keeping the
parsing mechanisms compatible to other variants in the future (e.g.,
phone numbers). Therefore, to reduce complexity for future imple-
mentation versions, we had to decide against showing the contact
address in the dialog. Future work should enhance OpenStack’s
code base to allow forwarding variables from the plugin logic to
the user interface to solve this problem.

Complexity in Implementing RBA. To integrate RBA into their
own software projects, developers need to implement the RBA al-
gorithm in the backend and test the algorithm with a data set and
compare the output with the reference implementation. When the
comparison was successful, they can integrate the data collection in
the frontend, and implement the communication between frontend
and backend. After that, they can implement the login flow includ-
ing the re-authentication prompt. Finally, the developers have to
set the different thresholds to classify the different risk categories.
This can be complex in practice, however.

As derived by the surrounding risk scores in Table 1, a score
above 0.003 could be medium risk and 0.018 high risk, as these
risk scores are not too common in the sample. We assume that
developers will not find this intuitive, as they rather expect numbers
like 0.5 for medium risk and 1.0 for high risk. Ways on how to
calibrate these scores to understandable values were not described
in the Freeman et al. paper. To solve this problem,Wiefling et al. [35]
suggested a machine learning based algorithm, which returns a risk
score threshold for medium risk. This threshold could be used as a
baseline to calibrate all risk scores to more readable values.

Another source of complexity could be the integration of pri-
vacy into RBA. To protect collected features from attacks, several
privacy-enhancing methods for the Freeman at al. algorithm were
introduced [35, 38]. While most of the methods will not change the
risk score, few of them will. Therefore, developers need to check
with reference tests whether the privacy enhancements will keep
RBA’s usability and security properties.

8 CONCLUSION AND OUTLOOK
RBA offers good security that service owners should deploy now
to increase account protection for their users, until secure and us-
able alternatives to passwords for online services become a reality.
Technical standards, political instruments, and scientific literature
support this. What is still lacking, however, is widespread use be-
yond the few major online services that have been early adopters.
Similarly, there is a lack of open implementations that software
developers can use as a source of information to tackle the complex
task. To address this gap and facilitate the use of RBA in practice,
we provided a first fully functional open source RBA implemen-
tation based on the Freeman et al. algorithm for the OpenStack
cloud management software. On the one hand, the OpenStack RBA
plugin can immediately secure many cloud computing platforms
and their resources, as well as users. On the other hand, it can serve
as a guiding example for developers. To further assist developers in
the complex task of implementing RBA for their online services, we
provided a way to test the algorithm implementations of Freeman
et al. Finally, we want to engage with software developers through
our repository who made use of our open RBA implementation
in some way. Our goal is to collect qualitative and quantitative
empirical data on how useful complete examples are perceived by
developers and what other factors play a role in the adoption of
security technologies.

Following our OpenStack implementation, we plan to integrate
RBA into more open source software projects. This should help to
impact a widespread use of RBA in practice to protect more users
from attacks like credential stuffing and password spraying.

6

Risk-Based Authentication for OpenStack: A Fully Functional Implementation and Guiding Example CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

REFERENCES
[1] Akamai. 2019. Credential Stuffing: Attacks and Economies. [state

of the internet] / security 5, Special Media Edition (April 2019).
https://web.archive.org/web/20210824114851/https://www.akamai.com/
us/en/multimedia/documents/state-of-the-internet/soti-security-credential-
stuffing-attacks-and-economies-report-2019.pdf

[2] FurkanAlaca and P. C. vanOorschot. 2016. Device Fingerprinting for Augmenting
Web Authentication: Classification and Analysis of Methods. In 32nd Annual
Computer Security Applications Conference (ACSAC ’16). ACM, 289–301. https:
//doi.org/10.1145/2991079.2991091

[3] Nampoina Andriamilanto, Tristan Allard, and Gaëtan Le Guelvouit. 2021. “Guess
Who?” Large-Scale Data-Centric Study of the Adequacy of Browser Fingerprints
for Web Authentication. In Innovative Mobile and Internet Services in Ubiquitous
Computing. Springer, Cham, 161–172. https://doi.org/10.1007/978-3-030-50399-
4_16

[4] Australian Cyber Security Centre. 2021. Australian Government Information Se-
curity Manual. Technical Report. https://web.archive.org/web/20210830131917/
https://www.cyber.gov.au/sites/default/files/2021-06/01.%20ISM%20-
%20Using%20the%20Australian%20Government%20Information%20Security%
20Manual%20(June%202021).pdf

[5] Joseph R. Biden Jr. 2021. Executive Order on Improving the Nation’s Cyberse-
curity. The White House (May 2021). https://www.whitehouse.gov/briefing-
room/presidential-actions/2021/05/12/executive-order-on-improving-the-
nations-cybersecurity/

[6] Anne Bumiller, Olivier Barais, Nicolas Aillery, and Gael Le Lan. 2022. Towards a
Better Understanding of Impersonation Risks. In 15th International Conference
on Security of Information and Networks (SIN ’22). IEEE, Sousse, Tunisia. https:
//doi.org/10.1109/SIN56466.2022.9970540

[7] Periwinkle Doerfler, Kurt Thomas, Maija Marincenko, Juri Ranieri, Yu Jiang,
Angelika Moscicki, and Damon McCoy. 2019. Evaluating Login Challenges as a
Defense Against Account Takeover. In The World Wide Web Conference (WWW
’19). ACM, 372–382. https://doi.org/10.1145/3308558.3313481

[8] Jonathan Dutson, Danny Allen, Dennis Eggett, and Kent Seamons. 2019. “Don’t
punish all of us”: Measuring User Attitudes about Two-Factor Authentication.
In 4th European Workshop on Usable Security (EuroUSEC ’19). https://doi.org/10.
1109/EuroSPW.2019.00020

[9] David Freeman, Sakshi Jain, Markus Dürmuth, Battista Biggio, and Giorgio Giac-
into. 2016. Who Are You? A Statistical Approach to Measuring User Authenticity..
In NDSS, Vol. 16. 21–24.

[10] Ajit Gaddam. 2019. Usage of Behavioral Biometric Technologies to Defend
Against Bots. In Enigma 2019. USENIX Association.

[11] Simson L. Garfinkel. 2005. Design principles and patterns for computer systems
that are simultaneously secure and usable.

[12] Anthony Gavazzi, RyanWilliams, Engin Kirda, Long Lu, Andre King, Andy Davis,
and Tim Leek. 2023. A Study of Multi-Factor and Risk-Based Authentication
Availability. In 32nd USENIX Security Symposium (USENIX Security ’23). USENIX
Association, Anaheim, CA, USA.

[13] P. A. Grassi, M. E. Garcia, and J. L. Fenton. 2017. Digital Identity Guidelines. NIST
Special Publication 800-63-3. National Institute of Standards and Technology,
Gaithersburg, MD 20899-2000. https://doi.org/10.6028/NIST.SP.800-63-3

[14] J. Hawkinson. 1996. Guidelines for creation, selection, and registration of an
Autonomous System (AS). RFC 1930. https://www.rfc-editor.org/rfc/rfc1930.html

[15] ISO 3166 Maintenance Agency. 2020. ISO 3166-1:2020(en) Codes for the repre-
sentation of names of countries and their subdivisions — Part 1: Country code.
ISO 3166-1. https://www.iso.org/obp/ui/#iso:std:iso:3166:-1:ed-4:v1:en

[16] Tom Le Bras. 2015. Online Overload – It’s Worse Than You Thought.
https://web.archive.org/web/20150919202348/https://blog.dashlane.com/
infographic-online-overload-its-worse-than-you-thought/

[17] Victor Le Pochat, TomVanGoethem, Samaneh Tajalizadehkhoob,Maciej Korczyn-
ski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation. In 2019 Network and Distributed System Security
Symposium (NDSS ’19). Internet Society. https://doi.org/10.14722/ndss.2019.23386

[18] Philipp Markert, Theodor Schnitzler, Maximilian Golla, and Markus Dürmuth.
2022. "As soon as it’s a risk, I want to require MFA": How Administrators
Configure Risk-based Authentication. In Eighteenth Symposium on Usable Privacy
and Security (SOUPS 2022). USENIX Association, Boston, MA, 483–501. https:
//www.usenix.org/conference/soups2022/presentation/markert

[19] Grzergor Milka. 2018. Anatomy of Account Takeover. In Enigma 2018. USENIX
Association. https://www.usenix.org/node/208154

[20] Paul Miller and Lauren E Nelson. 2015. Brief: OpenStack Is Now Ready For
Business. Forrester Report Brief (Sept. 2015).

[21] Robert Morris and Ken Thompson. 1979. Password security: A case history.
Commun. ACM 22, 11 (Nov. 1979), 594–597. https://doi.org/10.1145/359168.
359172

[22] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen. 2005. HOTP:
An HMAC-Based One-Time Password Algorithm. RFC 4226. https://doi.org/10.
17487/RFC4226

[23] National Cyber Security Centre. 2018. Cloud security guidance: 10, Identity and
authentication. Technical Report. https://www.ncsc.gov.uk/collection/cloud-
security/implementing-the-cloud-security-principles/identity-and-
authentication

[24] Lily Hay Newman. 2021. Facebook Will Force More At-Risk Accounts to Use
Two-Factor. https://web.archive.org/web/20211212185008/https://www.wired.
com/story/facebook-protect-two-factor-authentication-requirement/

[25] Thanasis Petsas, Giorgos Tsirantonakis, Elias Athanasopoulos, and Sotiris Ioan-
nidis. 2015. Two-factor Authentication: Is the World Ready?: Quantifying 2FA
Adoption. In Eighth European Workshop on System Security (EuroSec ’15). ACM.
https://doi.org/10.1145/2751323.2751327

[26] PyData Development Team. 2020. pandas documentation.
https://pandas.pydata.org/pandas-docs/version/1.1.5/.

[27] Nils Quermann, Marian Harbach, and Markus Dürmuth. 2018. The State of
User Authentication in the Wild. In Who are you?! Adventures in Authentication
Workshop 2018 (WAY ’18). https://wayworkshop.org/2018/papers/way2018-
quermann.pdf

[28] Ken Reese, Trevor Smith, Jonathan Dutson, Jonathan Armknecht, Jacob Cameron,
and Kent Seamons. 2019. A Usability Study of Five Two-Factor Authentication
Methods. In Fifteenth Symposium on Usable Privacy and Security (SOUPS ’19).
USENIX Association, 357–370. https://www.usenix.org/conference/soups2019/
presentation/reese

[29] IEEE Spectrum. 2022. Top Programming Languages 2022. https://spectrum.ieee.
org/top-programming-languages-2022

[30] Costas Tsaousis. 2022. All Cybercrime IP Feeds. https://iplists.firehol.org/.
[31] Twitter. 2022. Account Security - Twitter Transparency Center.

https://web.archive.org/web/20220211182429/https://transparency.twitter.
com/en/reports/account-security.html#2021-jan-jun

[32] Stephan Wiefling. 2022. Basic Algorithm for Risk-Based Authentication. https:
//github.com/das-group/rba-algorithm

[33] Stephan Wiefling, Markus Dürmuth, and Luigi Lo Iacono. 2020. More Than
Just Good Passwords? A Study on Usability and Security Perceptions of Risk-
based Authentication. In 36th Annual Computer Security Applications Conference
(ACSAC ’20). ACM, 203–218. https://doi.org/10.1145/3427228.3427243

[34] Stephan Wiefling, Markus Dürmuth, and Luigi Lo Iacono. 2021. What’s in Score
forWebsite Users: AData-Driven Long-Term Study on Risk-Based Authentication
Characteristics. In 25th International Conference on Financial Cryptography and
Data Security (FC ’21). Springer, 361–381. https://doi.org/10.1007/978-3-662-
64331-0_19

[35] Stephan Wiefling, Paul René Jørgensen, Sigurd Thunem, and Luigi Lo Iacono.
2023. Pump Up Password Security! Evaluating and Enhancing Risk-Based Au-
thentication on a Real-World Large-Scale Online Service. ACM Transactions on
Privacy and Security 26, 1, Article 6 (2023). https://doi.org/10.1145/3546069

[36] Stephan Wiefling, Luigi Lo Iacono, and Markus Dürmuth. 2019. Is This Really
You? An Empirical Study on Risk-Based Authentication Applied in the Wild. In
34th IFIP International Conference on ICT Systems Security and Privacy Protection
(IFIP SEC ’19). Springer, 134–148. https://doi.org/10.1007/978-3-030-22312-0_10

[37] Stephan Wiefling, Tanvi Patil, Markus Dürmuth, and Luigi Lo Iacono. 2020.
Evaluation of Risk-based Re-Authentication Methods. In 35th IFIP International
Conference on ICT Systems Security and Privacy Protection. Springer, 280–294.
https://doi.org/10.1007/978-3-030-58201-2_19

[38] StephanWiefling, Jan Tolsdorf, and Luigi Lo Iacono. 2021. Privacy Considerations
for Risk-Based Authentication Systems. In 2021 International Workshop on Privacy
Engineering (IWPE ’21). IEEE, 320–327. https://doi.org/10.1109/EuroSPW54576.
2021.00040

7

https://web.archive.org/web/20210824114851/https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-credential-stuffing-attacks-and-economies-report-2019.pdf
https://web.archive.org/web/20210824114851/https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-credential-stuffing-attacks-and-economies-report-2019.pdf
https://web.archive.org/web/20210824114851/https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-credential-stuffing-attacks-and-economies-report-2019.pdf
https://doi.org/10.1145/2991079.2991091
https://doi.org/10.1145/2991079.2991091
https://doi.org/10.1007/978-3-030-50399-4_16
https://doi.org/10.1007/978-3-030-50399-4_16
https://web.archive.org/web/20210830131917/https://www.cyber.gov.au/sites/default/files/2021-06/01.%20ISM%20-%20Using%20the%20Australian%20Government%20Information%20Security%20Manual%20(June%202021).pdf
https://web.archive.org/web/20210830131917/https://www.cyber.gov.au/sites/default/files/2021-06/01.%20ISM%20-%20Using%20the%20Australian%20Government%20Information%20Security%20Manual%20(June%202021).pdf
https://web.archive.org/web/20210830131917/https://www.cyber.gov.au/sites/default/files/2021-06/01.%20ISM%20-%20Using%20the%20Australian%20Government%20Information%20Security%20Manual%20(June%202021).pdf
https://web.archive.org/web/20210830131917/https://www.cyber.gov.au/sites/default/files/2021-06/01.%20ISM%20-%20Using%20the%20Australian%20Government%20Information%20Security%20Manual%20(June%202021).pdf
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://doi.org/10.1109/SIN56466.2022.9970540
https://doi.org/10.1109/SIN56466.2022.9970540
https://doi.org/10.1145/3308558.3313481
https://doi.org/10.1109/EuroSPW.2019.00020
https://doi.org/10.1109/EuroSPW.2019.00020
https://doi.org/10.6028/NIST.SP.800-63-3
https://www.rfc-editor.org/rfc/rfc1930.html
https://www.iso.org/obp/ui/#iso:std:iso:3166:-1:ed-4:v1:en
https://web.archive.org/web/20150919202348/https://blog.dashlane.com/infographic-online-overload-its-worse-than-you-thought/
https://web.archive.org/web/20150919202348/https://blog.dashlane.com/infographic-online-overload-its-worse-than-you-thought/
https://doi.org/10.14722/ndss.2019.23386
https://www.usenix.org/conference/soups2022/presentation/markert
https://www.usenix.org/conference/soups2022/presentation/markert
https://www.usenix.org/node/208154
https://doi.org/10.1145/359168.359172
https://doi.org/10.1145/359168.359172
https://doi.org/10.17487/RFC4226
https://doi.org/10.17487/RFC4226
https://www.ncsc.gov.uk/collection/cloud-security/implementing-the-cloud-security-principles/identity-and-authentication
https://www.ncsc.gov.uk/collection/cloud-security/implementing-the-cloud-security-principles/identity-and-authentication
https://www.ncsc.gov.uk/collection/cloud-security/implementing-the-cloud-security-principles/identity-and-authentication
https://web.archive.org/web/20211212185008/https://www.wired.com/story/facebook-protect-two-factor-authentication-requirement/
https://web.archive.org/web/20211212185008/https://www.wired.com/story/facebook-protect-two-factor-authentication-requirement/
https://doi.org/10.1145/2751323.2751327
https://wayworkshop.org/2018/papers/way2018-quermann.pdf
https://wayworkshop.org/2018/papers/way2018-quermann.pdf
https://www.usenix.org/conference/soups2019/presentation/reese
https://www.usenix.org/conference/soups2019/presentation/reese
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://web.archive.org/web/20220211182429/https://transparency.twitter.com/en/reports/account-security.html#2021-jan-jun
https://web.archive.org/web/20220211182429/https://transparency.twitter.com/en/reports/account-security.html#2021-jan-jun
https://github.com/das-group/rba-algorithm
https://github.com/das-group/rba-algorithm
https://doi.org/10.1145/3427228.3427243
https://doi.org/10.1007/978-3-662-64331-0_19
https://doi.org/10.1007/978-3-662-64331-0_19
https://doi.org/10.1145/3546069
https://doi.org/10.1007/978-3-030-22312-0_10
https://doi.org/10.1007/978-3-030-58201-2_19
https://doi.org/10.1109/EuroSPW54576.2021.00040
https://doi.org/10.1109/EuroSPW54576.2021.00040

	Abstract
	1 Introduction
	2 Risk-Based Authentication (RBA)
	3 Related Work
	4 OpenStack
	5 OpenStack RBA Extension
	5.1 Horizon RBA Extension (Frontend)
	5.2 Keystone RBA Extension (Backend)
	5.3 Extending the Feature Set

	6 Reference Test
	7 Discussion
	8 Conclusion and Outlook
	References

