
Even Turing Should Sometimes Not Be Able To
Tell: Mimicking Humanoid Usage Behavior for

Exploratory Studies of Online Services

Stephan Wiefling1, Nils Gruschka2, and Luigi Lo Iacono1

1 TH Köln - University of Applied Sciences, Cologne, Germany
{stephan.wiefling, luigi.lo iacono}@th-koeln.de

2 University of Oslo, Oslo, Norway
nilsgrus@ifi.uio.no

Abstract. Online services such as social networks, online shops, and
search engines deliver different content to users depending on their loca-
tion, browsing history, or client device. Since these services have a major
influence on opinion forming, understanding their behavior from a social
science perspective is of greatest importance. In addition, technical as-
pects of services such as security or privacy are becoming more and more
relevant for users, providers, and researchers. Due to the lack of essen-
tial data sets, automatic black box testing of online services is currently
the only way for researchers to investigate these services in a methodi-
cal and reproducible manner. However, automatic black box testing of
online services is difficult since many of them try to detect and block
automated requests to prevent bots from accessing them.
In this paper, we introduce a testing tool that allows researchers to cre-
ate and automatically run experiments for exploratory studies of online
services. The testing tool performs programmed user interactions in such
a manner that it can hardly be distinguished from a human user. To eval-
uate our tool, we conducted—among other things—a large-scale research
study on Risk-based Authentication (RBA), which required human-like
behavior from the client. We were able to circumvent the bot detec-
tion of the investigated online services with the experiments. As this
demonstrates the potential of the presented testing tool, it remains to
the responsibility of its users to balance the conflicting interests between
researchers and service providers as well as to check whether their re-
search programs remain undetected.

Keywords: Black box testing, Evaluation, Testing framework

1 Introduction

The advancing digital transformation impacts all areas of human life. As a conse-
quence, research aiming at understanding the inner workings of digital technolo-
gies, platforms, applications, services, and products, as well as their influence on
human society and culture, becomes increasingly important.

Postprint version of a paper accepted for NordSec 2019. The final authenticated version is available
online at https://doi.org/10.1007/978-3-030-35055-0_12.

https://doi.org/10.1007/978-3-030-35055-0_12


2 S. Wiefling et al.

Numerous examples for such intersections of online services with society can
be found today. All sorts of social networks use non-transparent algorithms to
perform content filtering and provisioning tasks, depending on one’s individ-
ual characteristics and interests. Other examples can be found in the various
deployed recommendation systems of e-commerce and content distribution plat-
forms. To what extent these types of online services influence society is an im-
portant research question. Is your taste in music governed by music streaming
companies and their algorithms to promote or recommend music? Are these
systems exploitable for purposes other than the intended ones? First research
attempts indicate that such influences on society are taking place [32,6,43].

Besides the impact on culture and society, technical aspects are more and
more hidden behind the user interfaces of online services. Deployed security, as
well as privacy preserving and undermining technologies, remain opaque to the
user. For instance, contemporary security approaches to strengthen password-
based authentication with Risk-based Authentication (RBA) [18] are deployed
by only a few large online services [28,23,2], even though this technology is of
broad relevance as the recent recommendation by NIST emphasizes [22]. Study-
ing RBA-instrumented services would help to demystify RBA setups so that
they can be discussed and further developed by a wider audience. This may
contribute to accelerate the adoption and deployment of RBA in the wild. Good
examples for exploratory research that are beneficial for society are the various
studies on misusing cookies for tracking purposes [12,17,7,26,9].

An essential prerequisite to perform effective and reliable research, in this
context, is the availability of data. Although many openly accessible data sets
of various online services and platforms exist [4], they only provide a very lim-
ited and fragmented view. One major reason for this lack of data is that the
companies and organizations possessing it—most commonly—do not share it
(publicly). Thus, the digital utilities surrounding our daily lives are black boxes
that do not reveal their internal workings. As this lack of transparency hinders
scientific research, methods are required to methodically reverse-engineer these
black boxes. This is important to understand the algorithms influencing our
current and future zeitgeist as well as their corresponding security and privacy
features.

Unfortunately, the investigation of the inner workings of online services is
complicated for several reasons which turns studying them into a difficult prob-
lem. There is no unique path to conduct such an analysis, no simple agreed Appli-
cation Programming Interface (API) or even approach. Moreover, online services
are distributed systems, making the service-side inaccessible to entities other
than the respective service provider itself. Also, investigating the inner work-
ings of online services is further complicated by means of the service provider.
For large-scale methodological studies, automated browsing through online ser-
vices is required. However, online services integrate technical countermeasures
against such automated browsing. These range from presenting CAPTCHA chal-
lenges [11] or delivering different website contents for human users and bots [1],
to completely blocking the service access [30]. Hence, in order to be able to



Mimicking Humanoid Usage Behavior for Studies of Online Services 3

conduct exploratory studies of online services, technologies are required to cam-
ouflage automated black box testing as far as possible.

This arms race between service providers and researchers lies in their con-
tradicting requirements. Service providers want to keep their internals secret, as
they might also contain intellectual property. Researchers instead, are keen to
analyze and understand systems thoroughly, with the aim to gain knowledge and
enhance system properties towards an optimum. Thus, in the absence of other
means, researchers will use black box tests to determine their research results,
while service providers will detect and block automated black box tests to keep
their internals opaque to outsiders.

Another reason for service providers to block automated black box testing
is that it is considered a double-edged sword since it might not only be used
by researchers. In the hands of attackers, such testing tools can be used to
threaten systems and networks, even if they are aimed at improving security.
Still, as security is about balancing several trade-offs, these trade-offs need to be
understood thoroughly in order to make the right compromise.

Contributions. We introduce an inspection tool to perform automated black
box testing of online services and, at the same time, mimic human-like user
behavior3. The aim is to provide a research vehicle to investigate the inner
workings of online services lacking publicly accessible resources. This can foster
discussion and collaboration among security researchers and service providers.

Outline. The rest of this paper is structured as follows. We review related work
in Section 2. We describe the introduced inspection tool in Section 3. We give
more detailed descriptions on its implementation as well as customization to
study online services in Section 4. To further illustrate the use of the introduced
inspection tool, Section 5 discusses exemplary studies. We discuss the benefits
as well as limitations of the introduced inspection tool in Section 6. As the usage
of our tool can easily be extended to exploit online services, Section 7 discusses
ethical considerations before the paper concludes in Section 8.

2 Related Work

A number of researchers performed black box testing of online services with web
browser automation. Choudhary et al. [10] developed a tool for automated web
application testing to detect cross-browser inconsistencies on websites. Starov
and Nikiforakis [34] analyzed the effect of browser extensions on the rendered
Document Object Model (DOM) document for the 50 most popular websites.
They showed that differences inside the DOM tree can be (mis-)used for fin-
gerprinting and tracking the client. Englehardt and Narayanan [15] measured
and analyzed one million websites and their corresponding usage of online track-
ing as well as the effect of browser privacy tools. Golla and Dürmuth [19] used

3 Provided as open source software at https://github.com/das-th-koeln/HOSIT

https://github.com/das-th-koeln/HOSIT


4 S. Wiefling et al.

browser automation to test password strength meters of online services. Degeling
et al. [12] automatically extracted cookie consent notices and privacy policies of
6,579 websites inside the European Union (EU) to analyze their appearance be-
fore and after the EU General Data Protection Regulation (GDPR) [16] went
into effect.

However, in all publications mentioned above, the corresponding browser
automation frameworks did not aim to imitate human-like behavior as we did
in our framework. As a consequence, these studies cannot tell whether their
observations reflect the services’ inner workings or a customized behavior due to
being detected as a bot.

Other browser automation frameworks tried to imitate human-like user-
actions to a small extent. Petsas et al. [29] used browser automation to evalu-
ate the quantity of Google users with enabled Two-factor Authentication (2FA).
Their framework introduced a random waiting time between clicks. Snickars and
Mähler [32] analyzed the behavior of the online music streaming service Spotify
with browser automation. Their automation framework conducted several user
actions, e.g., logging in, selecting a track, and skipping a track. However, they
noted that this was only possible before Spotify introduced reCAPTCHAs as a
bot protection mechanism in 2016.

In contrast to all these frameworks, we included a considerably higher amount
of efforts in our framework to closely mimic human-like behavior and bypass
CAPTCHAs to not be detected as a bot (see Section 6).

The DASH tool [13] by the DETER project aimed to model human behavior
in various situations, e.g., responding to phishing emails. In contrast to our tool
(see Section 3), the application did not really conduct human-like actions on
online services and only simulated possible behavior in theory.

Most browser automation tools described in this section were based on the
Selenium framework [15,17,12,32,19,10,34]. One tool was based on CasparJS [29].
We decided to use the high-level application programming library Puppeteer [21]
as a base for our tool. We chose Puppeteer over Selenium since it offers a higher-
level API and is targeted to the popular Chrome browser [44] instead of multiple
browsers. Note that Puppeteer was not available at the time where most of the
above mentioned studies were conducted4.

3 Humanoid Online Services Inspection Tool

The Humanoid Online Services Inspection Tool (HOSIT) was designed to sim-
ulate human-like browsing behavior on online services. While some frameworks
for automated browsing are freely available on the Internet, their standard func-
tionality makes them difficult to use for inspecting online services for several
reasons:

4 First version of the source code was published on the Puppeteer GitHub reposi-
tory on May 11th, 2017: https://github.com/GoogleChrome/puppeteer/commit/
2cda8c18d10865d79d3e63b23e36aa7562098bf7

https://github.com/GoogleChrome/puppeteer/commit/2cda8c18d10865d79d3e63b23e36aa7562098bf7
https://github.com/GoogleChrome/puppeteer/commit/2cda8c18d10865d79d3e63b23e36aa7562098bf7


Mimicking Humanoid Usage Behavior for Studies of Online Services 5

– There is no function to create virtual identities which are perceived as real
humans by online services.

– Some of the integrated functions do not model real-world human behavior and
thus can be detected by online services, e.g., typing with 0 ms delay or clicking
in the exact center of an element.

– The API allows activities which are not possible for real web browser users,
e.g., conducting browsing activities inside two browser tabs at the same time.

– Browser automation using these frameworks can be detected due to differences
between the normal and the automated browser mode [40].

– These frameworks do not log conducted actions such as name and screenshot
of clicked elements automatically. This makes potential implementation errors
(e.g., element with certain ID not found) hard to detect. Consequently, scaling
the automation to multiple machines is difficult.

We addressed these issues with HOSIT and enhanced the integrated standard
functionalities of Puppeteer with human-like browsing behavior and camouflage
measures to be as indistinguishable from human users as possible:

(i) A scrolling function to imitate reading of website contents (usage can be
seen in the script in Figure 2). The function scrolls down around half the
display height, pauses for some time, scrolls further, pauses again and re-
peats this procedure until reaching the bottom of the page. We developed
this function since scrolling is considered a typical behavior for human users
on websites [42,36].

(ii) A function which allows switching between browser tabs. This is also a
typical behavior for a human using a web browser.

(iii) A search query generator based on current events in media. The generated
queries can be used to create arbitrary browsing behavior, e.g., entering
query in a search engine and opening one of the results. The generator
accesses a publicly available Really Simple Syndication (RSS) feed and
parses the feed’s content to an evaluation function which generates a list of
search queries. From this list, the generator selects a random entry every
time the generator is called. The search query generators can be customized
and added in the HOSIT configuration, e.g., for generating search queries
focused on other topics. We chose this functionality since visiting search
engines is a common online activity [24,27].

(iv) Hidden element checks: some online services integrate hidden elements
which can be used to detect bots, e.g., typing text inside a hidden field
or clicking a hidden link. For this reason, we provide a function to check
whether a certain element on a website is visible or not.

(v) Integration of external services providing CAPTCHA solving capabilities.
(vi) Automated logging of all activities conducted on the online service with

screenshots into a MongoDB database for replicable studies. The database
type can be adjusted for individual use case scenarios.

In general, we focused on human-like behavior that could by analyzed by
reading out information via the web browser, i.e., keyboard and mouse events.



6 S. Wiefling et al.

Log

API

Virtual
Identities

Training
Procedures

Inspection
Procedures

H
O

S
IT

 F
ra

m
ew

o
rk

Inspected ServiceHuman User Imitation

API

S
tu

d
y

C
o
n
d
u
ct

o
r

Fig. 1. Architecture of HOSIT

We considered the human-like behavior based on empirical studies modeling
human computer interaction [8,14,46,37,33,25] as well as similar ideas on human
behavior simulation [5].

The basic architecture of HOSIT is as follows (see Figure 1). In order to
test services, the study conductor creates one or multiple virtual identities with
different browsing behavior (e.g., typing speed and clicking behavior). The con-
ductor also defines a sequence of activities to be executed on the tested services
for the respective study. Examples for activities can be: “click on shopping cart
link”, “search for a friend”, or “logout from service”. In many cases, these activ-
ities can be divided into training procedures (let the service learn “normal” user
behavior) and inspection procedures (analyze the service’s reaction to unusual
behavior). The HOSIT API offers functions to create virtual identities inside the
HOSIT framework as well as to execute the activities. In contrast to other solu-
tions, HOSIT enables human-like behavior in two ways. First, human-imitating
behavior is automatically added to activity calls for many functions (e.g., the
“click on button” function clicks on an arbitrary position inside the button).
And second, HOSIT offers additional function calls allowing explicit human be-
havior as a part of the activity sequence (e.g., “scroll to the end of the web
page”). Using a script containing a sequence of activities and the browsing be-
havior from the virtual identities, the HOSIT framework calls the service using
a Chromium browser instance. Finally, all responses from the service are logged
for later analysis.

Figure 2 shows a simple example of a HOSIT script calling an online service in
a human-imitating manner. The example code invokes HOSIT to open a search



Mimicking Humanoid Usage Behavior for Studies of Online Services 7

// Open new page tab

await controller.newPage("https ://www.startpage.com/");

// Wait a random time period

await controller.randomWait ();

// Click on the "Images"-Link

await controller.click("a[href=’https ://www.startpage.com/

en/pics.html ’]");

// Wait until the text field is loaded

await controller.waitForSelector("input[type=’text ’]");

// Generate and enter search query based on

// current events in media

await controller.typeSearchQuery("input[type=’text ’]");

// Scroll to the bottom of the page

await controller.scrollToBottom ();

Fig. 2. Example HOSIT script

engine, click on the link to open the image search (after waiting a random period),
and enter a search query chosen randomly by HOSIT based on current events
in the media. Finally, HOSIT scrolls to the bottom of the page. This results in
a usage of the online service in a way that a human would also do.

All activities performed on the online service as well as errors are logged into
a database. As a result, study conductors get an overview of all interactions that
the identities performed on the online service. This also eases the debugging of
errors caused by activities of a certain identity.

4 Implementation

We implemented HOSIT using the Node.js library Puppeteer [21] in version
0.13.0 for browser automation. Consequently, HOSIT can be used on all operat-
ing systems which are capable of running the Node.js runtime environment and
the browser Chromium. A Chromium version is bundled with the HOSIT instal-
lation. Nevertheless, HOSIT can be configured to use a customized Chromium
or Chrome browser version instead of the bundled version. This might be nec-
essary for example, when testing websites requiring Digital Rights Management
(DRM) functionalities, which are included in Chrome but not in Chromium.

Chromium is executed in a custom headful mode, in which the browser is
launched in the standard mode with visible GUI5. HOSIT uses this headful

5 To be compatible with Linux servers or Docker containers without a visible desktop
environment, the headful mode can also be run inside a virtual window session.



8 S. Wiefling et al.

mode to minimize the detection of automated browsing. Chromium’s headless
mode, which is designed specifically for browser automation, can be detected
by a number of differences in the browser’s properties and behavior [40]. Dur-
ing testing we actually experienced that online services treat headless browsers
differently. Amazon, for example, required a CAPTCHA in headless but not in
headful mode. We also patched HOSIT against known headless browser detec-
tion mechanisms [40]. HOSIT executes these patches when launching Chromium,
e.g., removing the navigator.webdriver property [35].

During testing, we found some indications that browser automation can be
detected with the standard functionality of Puppeteer. For instance, Amazon
rated correctly entered CAPTCHA solutions as not correct if “typed” in by the
standard Puppeteer function. Therefore, we enhanced some of Puppeteer’s inte-
grated functions with human-like user behavior. We compared manual browsing
behavior with the automated behavior of Puppeteer to determine differences and
optimized the affected functions. First, we modified the constant standard de-
lays between pressing and releasing key buttons with randomized delays. These
delays vary with an average typing speed which is defined by the identity (aver-
age time and maximum deviation). We recommend to measure these delays on
real humans before setting them on the identities. By default, we set empirically
measured typing speeds [8,14] on the identities. This procedure helped mimic
human behavior more precisely. Further, we modified the mouse input behav-
ior. Instead of clicking in the exact center of an element, the mouse selected a
random click point in the center quarter of the element. We also replaced the
default delay between pressing and releasing the left mouse button of 0 ms with
an empirically measured clicking time with randomized variations [25].

We, moreover, added further functionalities to HOSIT which did not exist in
Puppeteer (see Table 1). Finally, we simplified the API of Puppeteer and added
recurrent tasks for the use case scenario inside the functions, e.g., automatically
adjust the browser resolution when creating a new tab. As a result, fewer function
calls are required to achieve the same result as with Puppeteer while being more
human-like in many respects.

As stated in Section 3, each HOSIT instance is linked to a virtual identity
which controls a browser instance. All further browsing behaviors are derived
from this identity on this instance (e.g., typing behavior, selecting different cat-
egories based on the virtual identity’s persona). The identity manages all browser
tabs such as opening, switching, and closing browser tabs, and performs the ac-
tions on the website. These actions range from typing or clicking to scrolling and
can only be performed in the currently open browser tab. We decided to select
this identity-based structure to both optimize the API for the use case and to
avoid unrealistic browsing behavior that was possible in Puppeteer, e.g., clicking
buttons in two browser tabs at the same time.

When developing own studies of online services, study conductors have to
design individual testing procedures with HOSIT. This is necessary since nav-
igation structures and functionalities differ between online services and might
change over time. For fine-grained variations of the browsing behavior, each



Mimicking Humanoid Usage Behavior for Studies of Online Services 9

Table 1. Feature differences between Puppeteer and HOSIT

Puppeteer 0.13.0 HOSIT

Properties

Typing speed Constant Randomized variations

Click position Exact element center Randomized variations

Click time 0 ms Realistic [25]

Logging Limited Extended*

Browsing behavior changes - Yes, based on persona

Bot detection protection - Patched

Functions

Common workflows Need to be repeated Integrated in Controller class

Search query generator - Included

CAPTCHA solving - Included

Scrolling - Included

Select tabs - Included

- Not included
* Logs all conducted actions with screenshots into a database

HOSIT instance provides functions which can be used to increase randomized
browsing behavior. These functions range from providing a random boolean value
with a given probability for if-else conditions to providing the persona of the iden-
tity. By using these functions, we achieved that each browser session performed
by HOSIT appeared differently on the tested online services.

5 Exemplary Use

To evaluate HOSIT, we conducted two studies that we discuss in the following.
Both experiments would not have been possible without HOSIT or just with
significant higher effort. The discussions will also provide a better understanding
of HOSIT deployments based on the two given exemplary use case scenarios.

5.1 Use Case 1: RBA

Risk-based Authentication (RBA) [18] is an adaptive security measure to im-
prove password authentication. During login, RBA monitors and stores addi-
tional features available in the context (e.g., IP address or user agent string)
and requests additional information for authentication if a certain risk level is
exceeded. RBA offers protection against security risks such as credential stuff-
ing, password database leaks and intelligent password guessing methods. Beyond



10 S. Wiefling et al.

that, RBA has the potential to compensate low adoption rates of Two-factor
Authentication (2FA). For instance, less than 10% of all active Google users
activated 2FA in January 2018 [28].

RBA is recommended in the NIST digital identity guidelines [22] and is used
by several large-scale online services. However, these online services keep their
implementations secret and restrain their approaches for a public discussion in
science. This lack of public knowledge makes it difficult for small and medium
websites to use RBA.

For this reason, we black box tested eight popular online services6 with
HOSIT to find out more about the corresponding RBA implementations, i.e.,
features and offered additional authentication factors [45]. We created 28 virtual
online identities, registered 224 user accounts with the eight targeted services,
and observed the services’ behavior when accessing them under different cir-
cumstances. Each virtual identity had its own unique IP address from the same
Internet service provider and a personal computer.

However, analyzing the inner workings of RBA is complicated, since one
of the main tasks of RBA is to protect against bots. During pilot testing, we
found indicators that some online services treated an automated browser using
Puppeteer differently. For this reason, we designed our study using HOSIT to
imitate human user behavior as exact as possible. Imitating human behavior was
essential to make sure that the observed services’ behavior is identical to normal
usage.

RBA estimates the login risk based on the login history of the user. Therefore,
our virtual identities conducted 20 browsing sessions including user sessions on
the online services. The user sessions included login, activities on the online
service, and logout. After these 20 browsing sessions, we varied browser features
including the login time, IP address and device, logged in again on all online
services, and observed the reactions. Based on the reactions, we drew conclusions
about the inner RBA workings of the tested online services. The activities on the
online services were randomized and individualized with HOSIT and differed on
each of the online services. We selected typical activities for each of the online
services, e.g., scrolling in the newsfeed, checking mail inbox or browsing for
articles or jobs. In addition, these activities included a lot of randomness to
mitigate being detected as a bot. As an example, on social media websites, it
was randomly alternated between scrolling in the newsfeed, checking the message
inbox and searching for content.

Since online services are likely tracking their users [7,9], all virtual identities
simulated randomized browsing behavior in each browsing session with HOSIT.
They visited search engines and entered search queries based on current topics
discussed in media. Then, they opened some of the websites and “read” the text
by scrolling and waiting. Also, the testing sequence of services was shuffled to a
random order. This was done to prevent our virtual online identities from logging
into the online services at similar times.

6 Amazon, Facebook, GOG.com, Google, iCloud, LinkedIn, Steam and Twitch



Mimicking Humanoid Usage Behavior for Studies of Online Services 11

With the study based on HOSIT, we were able to derive features as well as
an approximation to the respective weightings used for the RBA risk estimation
of popular online services. One major finding was that five of the eight tested
popular online services used RBA. Also, each of the services had a different RBA
implementation, varying from protecting all users to only a selection of users.
Besides using the IP address as a high weighted RBA feature, some services also
used additional lower weighted features (e.g., user agent string).

More details on the RBA study can be found in the original publication [45].

5.2 Use Case 2: Amazon Product Recommendation System

When shopping on Amazon, a large amount of customer actions are tracked by
the online shop. Besides the purchased items, these actions also include every
item just visited by the user. Details can be seen in logs which European users
can request from Amazon [3]. This right to request all personal data stored on
a service provider is granted by the GDPR [16].

Fig. 3. Shopping history and recommendations in the Amazon online shop

Amazon offers different types of product recommendations that are consid-
ered interesting for the customer [31]. When visiting a product page for exam-
ple, similar or related items are presented. These items are based on sponsoring
(“Sponsored products related to this item”) or shopping behavior of other users
(“Customers who bought this item also bought”). Another recommendation type
(“Inspired by your browsing history”) is based on the user’s own browsing his-
tory mentioned in the previous paragraph, i.e., not only the purchase history,
but also items just visited.

The recommendations given by Amazon are interesting for customers as well
as other online shops. Hence, these recommendations can be considered a valu-
able asset for Amazon. It is therefore a reasonable assumption that Amazon, by
detecting bots, is protecting these assets from automatic scraping. As a counter-
measure, a bot could be presented different website content compared to human



12 S. Wiefling et al.

users, e.g., a CAPTCHA, different recommendations, or even recommendations
with different prices. Thus, research on recommendations shown to human users
requires a human-imitating client as provided by HOSIT.

In order to analyze the recommendation system and to verify this assumption,
we conducted a study on the Amazon online shop. In this study, our (automated)
user requested a fixed sequence of products and recorded the recommended prod-
ucts on the history page.

We conducted the same study with three different types of clients: automat-
ically using Puppeteer, automatically using HOSIT, and manually by a human
user. In addition, the products were requested in two different manners: either by
simply opening the sequence of product page URLs or with “human like” online
shopping, i.e., typing a search term into the search bar, selecting a search result,
looking at the product page, searching for a next item and so forth. Finally, we
performed this study with both registered and unregistered Amazon users.

The evaluation of the study revealed an unexpected result: the recommended
items were exactly the same in all cases, including the order of items and the
product prices. Thus, in contrast to the RBA of Amazon services, we assume
that Amazon does not perform any bot detection for their recommendation
system or allows bots to a certain degree, e.g., let harmless bots pass, block bots
exaggerating the network traffic [1].

6 Benefits and Limitations

We put a lot of effort into ensuring that our tool was not recognized as a bot
by online services. Nevertheless, the possibility that online services recognize
HOSIT-based experiments as automated browsing remains. Even human-like
browsing if performed constantly for a very long time will surely be detected.
Also, creating too many new user accounts from the same IP address in a short
time is likely to be noticed and even stopped by many online services. This,
however, is even true when performed by a human. Thus, despite all protection
mechanisms, automated browsing activities should not be exaggerated and kept
at a realistic level, e.g., by introducing a long pause after some hours.

Still, based on our observations, we are convinced that our tool remained
under respective bot detection thresholds. For instance, Amazon did not block
automated logins with HOSIT while it did with Puppeteer. In March 2019, we
also tested HOSIT using an instance of reCAPTCHA v3 [20], which is specifically
designed to recognize bots. It analyzed the browsing behavior and returned a risk
score. The score was a numerical value between 1.0 (very likely a human) and 0.0
(very likely a bot). We opened a testing website, which used reCAPTCHA v3,
with both Puppeteer and HOSIT, and observed the risk score returned by the
reCAPTCHA API. When using HOSIT, the reCAPTCHA v3 risk scores were
identical to those of a human-controlled Chrome browser with empty browsing
history and cookies (score: 0.7 = likely a human), while this was not the case
with Puppeteer (score: 0.1 = likely a bot). After the release of HOSIT in April
2019, the reCAPTCHA risk score when using HOSIT was lowered to 0.3. This



Mimicking Humanoid Usage Behavior for Studies of Online Services 13

again underlines the arms race between bot detectors and bot detection avoiders.
We will observe novel bot detection mechanisms and integrate countermeasures
against them in future versions of HOSIT.

Before conducting research studies with HOSIT, study conductors are ad-
vised to test for anomalies on online services. In addition, study conductors
should monitor which JavaScript attributes were read by online services while
accessing this service [41]. These tests are helpful to determine possible bot de-
tection and to implement countermeasures as a result.

Overall, we still find HOSIT highly sensible for studies due to the following
reasons: (i) The reCAPTCHA v3 risk score is still higher than with Puppeteer.
(ii) Not all online services on the Internet use the current reCAPTCHA. (iii) The
API of HOSIT is more simplified than the API of comparable tools such as
Selenium and Puppeteer, which makes it much easier to use.

7 Ethical Considerations

As with most tools for black box analysis, HOSIT is considered as “dual use”,
i.e., it can be used for illegitimate purposes as well. On the one hand, it can be
beneficial to gather information on service behavior determining our everyday
life. On the other hand, it could also be used for click fraud on online advertising,
theft of intellectual property, or possibly even denial of service. Further, when
using HOSIT, researchers should carefully check not to violate the respective
Terms of Service. Also, researchers should use automated browsing responsibly,
e.g., by keeping the impact on the inspected online services minimal [29,45].

We believe, however, that the results gathered by public research with HOSIT
can be beneficial for a large user base and thus should be set ahead of corporate
goals. We further argue that our work is justified, as the expected gain from
scientific studies outweighs the potential security implications. Ultimately, we
hope that public research based on our inspection tool will be beneficial for
smaller online services. In consequence, security related research using this tool
will protect a larger user base.

8 Conclusion

In this paper we presented HOSIT, a framework for automatically invoking on-
line services in a human-like manner. As many online services try to detect if the
client is a person or a bot, human-imitating behavior is required for automated
service interactions in order to receive the same results as a human user. HOSIT
implements a number of human-like behavior techniques and can be extended
with further methods, as required by the targeted experiment and online service.

HOSIT can be used to circumvent services’ bot-detection and to perform
large-scale research on how online services behave towards human users. This
is particularly interesting if the offered service depends—or is suspected to
depend—on the user’s behavior, location, history, device, and so on. Examples
for such services are results from search engines, information in social networks,



14 S. Wiefling et al.

or recommendations in online shops. In particular, our research on RBA [45],
which led to valuable and beneficial results, would not have even been possible
without HOSIT. We discovered—among others—a privacy leakage in one of the
RBA dialogs of Facebook and resolved this issue within a responsible disclosure
process.

In future work, we will continuously extend and refine the human-imitating
techniques of HOSIT. To evaluate their effectiveness, we will perform in-depth
analysis on the influence of our methods on bot-detection systems, such as re-
CAPTCHA, on a regular basis. Moreover, we will apply HOSIT to study further
scenarios including, e.g., search engine results and local browser storage usage
patterns. We hope to see more of such research conducted on the basis of HOSIT.

For future research on service behavior, we will also follow alternative ap-
proaches. Instead of performing black box tests using camouflaged tools, services
could enable responsible access to researchers. Researchers would benefit from
unbiased results and focus on the analysis (and not on the black box testing
tools), and services could advertise their support for research. This responsible
service access could be monitored by an independent organization or public au-
thority. A similar method called regulatory sandbox is used successfully in the
financial area [38] and is currently discussed for research on personal identifying
information [39].

Acknowledgements. We would like to thank Tanvi Patil for proofreading a
draft of the paper. This research was supported by the research training group
“Human Centered Systems Security” (NERD.NRW) sponsored by the state of
North Rhine-Westphalia.

References

1. Akamai: Bot-Manager (Jan 2018), https://www.akamai.com/us/en/multimedia/
documents/product-brief/bot-manager-product-brief.pdf

2. Allen, N.A.: Risk based authentication, patent number US9202038B1 (2015)

3. Amazon: Amazon.co.uk Help: How do I request my data? (2019), https://www.
amazon.co.uk/gp/help/customer/display.html?nodeId=G5NBVNN2RHXD5BUW

4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A Nucleus for a Web of Open Data. In: The Semantic Web, vol. 4825, pp. 722–735.
Springer Berlin Heidelberg (Nov 2007)

5. Blythe, J., Botello, A., Sutton, J., Mazzaco, D., Lin, J., Spraragen, M., Zyda, M.:
Testing Cyber Security with Simulated Humans. In: IAAI ’11. San Francisco, CA,
USA (Aug 2011)

6. Bond, R.M., Fariss, C.J., Jones, J.J., Kramer, A.D.I., Marlow, C., Settle, J.E.,
Fowler, J.H.: A 61-million-person experiment in social influence and political mo-
bilization. Nature 489(7415), 295–298 (Sep 2012)

7. Bujlow, T., Carela-Espanol, V., Lee, B.R., Barlet-Ros, P.: A survey on web track-
ing: Mechanisms, implications, and defenses. Proceedings of the IEEE 105(8),
1476–1510 (Aug 2017)

https://www.akamai.com/us/en/multimedia/documents/product-brief/bot-manager-product-brief.pdf
https://www.akamai.com/us/en/multimedia/documents/product-brief/bot-manager-product-brief.pdf
https://www.amazon.co.uk/gp/help/customer/display.html?nodeId=G5NBVNN2RHXD5BUW
https://www.amazon.co.uk/gp/help/customer/display.html?nodeId=G5NBVNN2RHXD5BUW


Mimicking Humanoid Usage Behavior for Studies of Online Services 15

8. Card, S.K., Moran, T.P., Newell, A.: The keystroke-level model for user perfor-
mance time with interactive systems. Communications of the ACM 23(7), 396–410
(Jul 1980)

9. Chaabane, A., Kaafar, M.A., Boreli, R.: Big friend is watching you: Analyzing on-
line social networks tracking capabilities. In: WOSN ’12. pp. 7–12. ACM, Helsinki,
Finland (Aug 2012)

10. Choudhary, S.R., Prasad, M.R., Alessandro Orso: X-PERT: a web application test-
ing tool for cross-browser inconsistency detection. In: ISSTA ’14. pp. 417–420.
ACM, San Jose, CA, USA (2014)

11. Dalai, A.K., Jena, S.K.: Online identification of illegitimate web server requests.
In: ICIP ’11. pp. 123–131. Springer, Bangalore, India (2011)

12. Degeling, M., Utz, C., Lentzsch, C., Hosseini, H., Schaub, F., Holz, T.: We Value
Your Privacy ... Now Take Some Cookies: Measuring the GDPR’s Impact on Web
Privacy. In: NDSS ’19. San Diego, CA, USA (Feb 2019)

13. DETER Project: DASH user guide (2014), https://deter-project.org/sites/
deter-test.isi.edu/files/files/dash_users_guide.pdf

14. Drury, C.G., Hoffmann, E.R.: A model for movement time on data-entry keyboards.
Ergonomics 35(2), 129–147 (Feb 1992)

15. Englehardt, S., Narayanan, A.: Online Tracking: A 1-million-site Measurement and
Analysis. In: CCS’16. pp. 1388–1401. ACM, Vienna, Austria (Oct 2016)

16. European Parliament and Council: Regulation (EU) 2016/679 (GDPR) (Jan 2016),
http://data.europa.eu/eli/reg/2016/679/oj/eng

17. Franken, G., Goethem, T.V., Joosen, W.: Who Left Open the Cookie Jar? A
Comprehensive Evaluation of Third-Party Cookie Policies. In: USENIX Security
’18. Baltimore, MD, USA (Aug 2018)

18. Freeman, D., Jain, S., Duermuth, M., Biggio, B., Giacinto, G.: Who Are You? A
Statistical Approach to Measuring User Authenticity. In: NDSS ’16. San Diego,
CA, USA (Feb 2016)

19. Golla, M., Dürmuth, M.: On the Accuracy of Password Strength Meters. In: CCS
’18. pp. 1567–1582. ACM, Toronto, Canada (Oct 2018)

20. Google: reCAPTCHA v3 (Jul 2019), https://developers.google.com/

recaptcha/docs/v3
21. Google Chrome: Puppeteer - Headless Chrome node API (Jul 2019), https://

github.com/googlechrome/puppeteer
22. Grassi, P.A., Fenton, J.L., Newton, E.M., Perlner, R.A., Regenscheid, A.R., Burr,

W.E., Richer, J.P., Lefkovitz, N.B., Danker, J.M., Choong, Y.Y., Greene, K.K.,
Theofanos, M.F.: Digital identity guidelines: authentication and lifecycle manage-
ment. Tech. Rep. NIST SP 800-63b, National Institute of Standards and Technol-
ogy, Gaithersburg, MD (Jun 2017)

23. Iaroshevych, O.: Improving Second Factor Authentication Challenges to Help Pro-
tect Facebook account owners. In: SOUPS ’17. USENIX Association, Santa Clara,
CA, USA (Jul 2017)

24. Judd, T., Kennedy, G.: A five-year study of on-campus Internet use by undergrad-
uate biomedical students. Computers & Education 55(4), 1564–1571 (Dec 2010)

25. Komandur, S., Johnson, P.W., Storch, R.: Relation between mouse button click
duration and muscle contraction time. In: EMBC ’08. IEEE (Aug 2008)

26. Li, T.C., Hang, H., Faloutsos, M., Efstathopoulos, P.: TrackAdvisor: Taking Back
Browsing Privacy from Third-Party Trackers. In: Passive and Active Measurement,
vol. 8995, pp. 277–289. Springer International Publishing, Cham (2015)

27. Mark, G., Wang, Y., Niiya, M.: Stress and multitasking in everyday college life: an
empirical study of online activity. In: CHI ’14. ACM, Toronto, Canada (2014)

https://deter-project.org/sites/deter-test.isi.edu/files/files/dash_users_guide.pdf
https://deter-project.org/sites/deter-test.isi.edu/files/files/dash_users_guide.pdf
http://data.europa.eu/eli/reg/2016/679/oj/eng
https://developers.google.com/recaptcha/docs/v3
https://developers.google.com/recaptcha/docs/v3
https://github.com/googlechrome/puppeteer
https://github.com/googlechrome/puppeteer


16 S. Wiefling et al.

28. Milka, G.: Anatomy of Account Takeover. In: Enigma 2018. USENIX Association,
Santa Clara, CA (Jan 2018), https://www.usenix.org/node/208154

29. Petsas, T., Tsirantonakis, G., Athanasopoulos, E., Ioannidis, S.: Two-factor au-
thentication: Is the world ready?: Quantifying 2FA adoption. In: EuroSec ’15. pp.
4:1–4:7. ACM, Bordeaux, France (Apr 2015)

30. Rsmwe: Rakuten.com Chrome Headless Detection (Feb 2018), https://github.
com/Rsmwe/Headless-detected-demo

31. Smith, B., Linden, G.: Two Decades of Recommender Systems at Amazon.com.
IEEE Internet Computing 21(3), 12–18 (May 2017)

32. Snickars, P., Mähler, R.: SpotiBot — Turing Testing Spotify. Digital Humanities
Quarterly 12, 12 (2018)

33. Soukoreff, R.W., MacKenzie, I.S.: Towards a standard for pointing device evalua-
tion, perspectives on 27 years of Fitts’ law research in HCI. International Journal
of Human-Computer Studies 61(6), 751–789 (Dec 2004)

34. Starov, O., Nikiforakis, N.: XHOUND: Quantifying the Fingerprintability of
Browser Extensions. In: IEEE S&P. IEEE, San Jose, CA, USA (May 2017)

35. Steward, S., Burns, D.: WebDriver - W3C Recommendation (Jun 2018), https:
//www.w3.org/TR/webdriver1/

36. Sulikowski, P., Zdziebko, T., Turzyński, D., Kańtoch, E.: Human-website interac-
tion monitoring in recommender systems. Procedia Computer Science 126, 1587–
1596 (2018)

37. Trauzettel-Klosinski, S., Dietz, K.: Standardized Assessment of Reading Perfor-
mance: The New International Reading Speed Texts IReST. Investigative Opthal-
mology & Visual Science 53(9), 5452 (Aug 2012)

38. UK Financial Conduct Authority: Regulatory Sandbox Lessons Learned Re-
port (2017), https://www.fca.org.uk/publication/research-and-data/

regulatory-sandbox-lessons-learned-report.pdf

39. UK Information Commissioner’s Office: Call for Views on Build-
ing a Sandbox: Summary of Responses and ICO Comment (2018),
https://ico.org.uk/media/about-the-ico/consultations/2260322/

201811-sandbox-call-for-views-analysis.pdf

40. Vastel, A.: Detecting Chrome headless, new techniques (Jan
2018), https://antoinevastel.com/bot%20detection/2018/01/17/

detect-chrome-headless-v2.html

41. Vastel, A.: How to monitor the execution of JavaScript code with Puppeteer and
Chrome headless (Jun 2019), https://antoinevastel.com/javascript/2019/06/
10/monitor-js-execution.html

42. Velayathan, G., Yamada, S.: Behavior-Based Web Page Evaluation. In: WI-IAT
’06. pp. 409–412 (Dec 2006)

43. Venkatadri, G., Lucherini, E., Sapiezynski, P., Mislove, A.: Investigating sources
of PII used in Facebook’s targeted advertising. PETS 2019, 227–244 (Jan 2019)

44. W3Schools: Browser Statistics: The Most Popular Browsers (2019), https://www.
w3schools.com/browsers/default.asp

45. Wiefling, S., Lo Iacono, L., Dürmuth, M.: Is This Really You? An Empiri-
cal Study on Risk-Based Authentication Applied in the Wild. In: IFIP SEC
’19. Springer International Publishing (Jun 2019), https://doi.org/10.1007/

978-3-030-22312-0_10

46. Williams, J.L., Skinner, C.H., Floyd, R.G., Hale, A.D., Neddenriep, C., Kirk, E.P.:
Words correct per minute: The variance in standardized reading scores accounted
for by reading speed. Psychology in the Schools 48(2), 87–101 (Feb 2011)

https://www.usenix.org/node/208154
https://github.com/Rsmwe/Headless-detected-demo
https://github.com/Rsmwe/Headless-detected-demo
https://www.w3.org/TR/webdriver1/
https://www.w3.org/TR/webdriver1/
https://www.fca.org.uk/publication/research-and-data/regulatory-sandbox-lessons-learned-report.pdf
https://www.fca.org.uk/publication/research-and-data/regulatory-sandbox-lessons-learned-report.pdf
https://ico.org.uk/media/about-the-ico/consultations/2260322/201811-sandbox-call-for-views-analysis.pdf
https://ico.org.uk/media/about-the-ico/consultations/2260322/201811-sandbox-call-for-views-analysis.pdf
https://antoinevastel.com/bot%20detection/2018/01/17/detect-chrome-headless-v2.html
https://antoinevastel.com/bot%20detection/2018/01/17/detect-chrome-headless-v2.html
https://antoinevastel.com/javascript/2019/06/10/monitor-js-execution.html
https://antoinevastel.com/javascript/2019/06/10/monitor-js-execution.html
https://www.w3schools.com/browsers/default.asp
https://www.w3schools.com/browsers/default.asp
https://doi.org/10.1007/978-3-030-22312-0_10
https://doi.org/10.1007/978-3-030-22312-0_10

	Even Turing Should Sometimes Not Be Able To Tell: Mimicking Humanoid Usage Behavior for Exploratory Studies of Online Services

