
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

“I just looked for the solution!”
On Integrating Security-Relevant Information

in Non-Security API Documentation
to Support Secure Coding Practices

Peter Leo Gorski, Sebastian Möller, Stephan Wiefling, and Luigi Lo Iacono

Abstract—Software developers build complex systems using plenty of third-party libraries. Documentation is key to understand and
use the functionality provided via the libraries’ APIs. Therefore, functionality is the main focus of contemporary API documentation,
while cross-cutting concerns such as security are almost never considered at all, especially when the API itself does not provide
security features. Documentations of JavaScript libraries for use in web applications, e.g., do not specify how to add or adapt a Content
Security Policy (CSP) to mitigate content injection attacks like Cross-Site Scripting (XSS). This is unfortunate, as security-relevant API
documentation might have an influence on secure coding practices and prevailing major vulnerabilities such as XSS.
For the first time, we study the effects of integrating security-relevant information in non-security API documentation. For this purpose,
we took CSP as an exemplary study object and extended the official Google Maps JavaScript API documentation with security-relevant
CSP information in three distinct manners. Then, we evaluated the usage of these variations in a between-group eye-tracking lab study
involving N=49 participants. Our observations suggest: (1) Developers are focused on elements with code examples. They mostly skim
the documentation while searching for a quick solution to their programming task. This finding gives further evidence to results of
related studies. (2) The location where CSP-related code examples are placed in non-security API documentation significantly impacts
the time it takes to find this security-relevant information. In particular, the study results showed that the proximity to functional-related
code examples in documentation is a decisive factor. (3) Examples significantly help to produce secure CSP solutions. (4) Developers
have additional information needs that our approach cannot meet.
Overall, our study contributes to a first understanding of the impact of security-relevant information in non-security API documentation
on CSP implementation. Although further research is required, our findings emphasize that API producers should take responsibility for
adequately documenting security aspects and thus supporting the sensibility and training of developers to implement secure systems.
This responsibility also holds in seemingly non-security relevant contexts.

Index Terms—API Documentation, Content Security Policies, Secure Coding Practices, Developer Centered Security, Usable Security

F

1 INTRODUCTION

IN 2020, approximately twenty-four million develop-
ers [1], [2] worked to meet the software needs of over

four billion Internet users [3]. Web development is an at-
tractive field for many developers because the Web, with
its countless application areas, is very closely linked to our
daily lives. However, many software products are produced
without the know-how to consider data and application
security during the development life cycle [4]. Due to the
high degree of network connectivity, the sensitivity of user
data, and legal requirements [5], many secure coding prac-
tices for APIs [6] and web applications [7] are mandatory in
web engineering. Especially developers who are not familiar
with security need support to protect the data of their
users and to make their applications secure. This group also
includes nonprofessional and prospective developers such

• Peter Leo Gorski, Stephan Wiefling, and Luigi Lo Iacono are with the
Department of Computer Science, Data and Application Security Group,
H-BRS University of Applied Sciences, Sankt Augustin, Germany.
E-mail: {peter.gorski,stephan.wiefling,luigi.lo_iacono}@h-brs.de

• Sebastian Möller is with the Quality and Usability Lab, TU Berlin,
Germany.
E-mail: sebastian.moeller@tu-berlin.de

Manuscript received October 26, 2020; revised May 10, 2021.

as computer science students and junior developers who
are at the beginning of their career.

Due to the complexity resulting from the data and ap-
plication security mechanisms, challenges exist for many
components of a software development environment. Us-
ability flaws in the design of security APIs lead to improper
usage and, in the end, to vulnerable software [8], [9], [10],
[11], [12]. Static analysis tools or extensions for Integrated
Development Environments (IDEs) to find and fix vulner-
abilities can overwhelm developers [13], [14], or available
tools are not used at all [15]. Documentation is sparse [16]
or does not provide the information a developer needs [17].
Furthermore, online resources, despite their popularity, can
spread unsafe code examples [18].

Since security is often a secondary task in software
development, there are also efforts to equip development
environments with security defaults [19], [20]. This support
can relieve developers to a certain degree from implement-
ing security components themselves, which are necessary to
build a development project on a secure foundation. How-
ever, not every security requirement in web development
can be covered by defaults without the developer actively

Postprint version. Article accepted for IEEE Transactions On Software Engineering. DOI: 10.1109/TSE.2021.3094171
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

https://doi.org/10.1109/TSE.2021.3094171

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

configuring the framework. A proven example of this are
Content Security Policies (CSPs) [21].

CSPs [21] can be an effective measure to protect
the integrity of website and web application elements
against code injection attacks, such as Cross-Site Script-
ing (XSS) [22]. However, studies have shown that CSPs
are rarely used in practice and are error-prone [23], [24],
[25], [26]. Some of the flaws are caused by a combination
of usability problems in web development frameworks,
browser warnings, and API documentation [27]. Developers
miss essential information and support when having little
experience with security mechanisms such as CSPs [27].
Facing these challenges, framework developers may decide
to avoid or remove a security default feature [28], to avoid
putting their users in an uncomfortable development situ-
ation that can hinder the completion of a primary task. To
prevent such decisions and situations, it should be investi-
gated both the type of additional information web develop-
ers need to implement a secure application, and how tools
and documentation can reliably provide this information.

For popular development frameworks and libraries, a
diverse range of API documentation is usually available.
Therefore developers can choose the information sources
that best meet their information needs. When having a
free choice, they do not only use secondary web sources
such as blogs and developer centered question and answer
platforms like Stack Overflow [18], [29]. Instead, they also
use official information of software producers [17]. Recent
studies conclude that content and form of official secu-
rity API documentation should better address users’ needs
through easily accessible and practical recommendations for
action and code examples [10], [11], [16], [17], [30], [31].

However, these requirements do not only concern the
documentation of security APIs [32]. Since many aspects
of web development include network connectivity, these
implicate security requirements, which should be also ad-
dressed by non-security Web API documentation. As a non-
security API we understand an API that is not classified
as a security API [33]. Developers can take advantage of
over 22,000 Web APIs [34] to add functionalities to their
applications. Even if the vast majority of these libraries do
not directly relate to security, like, e.g., a cryptographic API
does, the integration of a Web API such as Google Maps can
lead to security considerations that a developer must take
into account.

Thus, web developers are required to meet this require-
ment and responsibility. In addition to the challenges of sup-
porting API users with security-relevant information in a
usable manner, as is the case with security APIs, other issues
arise for non-security APIs. Security-relevant information
and code examples do not relate to the primary feature set
offered by an API. From an API producer’s point of view,
the question arises, where to place specific security-related
information and code examples to support users in applying
security measures. Furthermore, developers should perceive
content and locations as meaningful and appropriate.

Recent studies found that neither professional devel-
opers nor students are sufficiently familiar with security
concepts to be able to apply them securely. Still, we assume
that this task is a particular challenge for inexperienced
developers, such as prospective developers who are at the

end of their studies and junior developers who have just
started their careers. Usually, all developer groups share
the same documentation offered by framework and API
producers. For these reasons we selected a students sample
(cf. Section 4) where most of the participants were near
the end of their studies, and some already got paid for
developing software (cf. Section 5).
Research Questions — Security-related information should
also be part of the non-security API documentation, to assist
developers in dealing with these considerations reliably
and comprehensively. API producers provide essential and
trustworthy first-hand information. In this way, each API
provider could, e.g., supply its consumers with a tailored
CSP for their services. We assume this approach to be useful
for developers since API providers should know best about
the required whitelist entries, i.e., the resources that their
software library require and the entities that deliver these
resources. To the best of our knowledge, the approach to in-
tegrate CSP information in non-security API documentation
is not applied in practice to date.

Before we can address such a demand to the numerous
API providers, it should first be understood whether this
approach can help developers to implement a secure CSP
in a web development framework. Research has not yet
answered the question of how to usefully integrate security-
relevant information into the documentation of a non-
security Web API. Using the concrete application context of
CSPs as a starting point, where extensive adoption problems
exist in web development practice [23], [24], [25], [26], [35],
we examine the following research questions:
RQ1: Does the position of where documentation places security-
relevant CSP information make a difference in transporting this
information to a developer? In a between-group lab study, we
compare the original Google Maps JavaScript API documen-
tation with three extended prototypes. By analyzing gaze
data distributions, we study placement effects of security-
relevant CSP information on the developers’ performance.
RQ2: How do developers read API documentation, and what
elements in the documentation do they pay attention to? We use
eye-tracking to analyze the behavior of developers and to
identify areas of visual attention by evaluating heat maps.
RQ3: Does CSP documentation affect the functionality and se-
curity of participants’ programming task solutions? We analyze
programming task results to evaluate whether our docu-
mentation approach supports developers with configuring
CSPs and thus helps to integrate a functional and secure
Google Maps API into a web page.

To answer these research questions, we present the fol-
lowing work:

• We design, implement, and test three extended docu-
mentation prototypes of the original Google Maps API
documentation that add security-relevant CSP exam-
ples and information.

• We conduct a between-group eye-tracking lab study
with 49 junior software developers.

• We evaluate in detail how junior developers work with
API documentation and evaluate the effectiveness of
our novel approach to integrate CSP examples in non-
security API documentation.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

• We highlight limitations and conclude with a recom-
mendation for API vendors on how to include CSP
examples in their API documentation.

Our results confirm previous work showing that us-
ability problems exist in the application of CSP [27], [36].
While existing work illustrated that easily accessible and
application-related code examples in security API docu-
mentation improve its usability and developer’s code se-
curity [9], [10], [37], we found evidence that also security-
relevant information in non-security API documentation is
important to support secure coding practices. Additionally,
our study extends knowledge offering fine-grained eye-
tracking insights in the developer’s behavior while using
API documentation. Our participants mostly skimmed the
documentation while searching for a quick solution to their
programming task. We found that the location where CSP
code examples are placed in non-security API documen-
tation significantly impacts the time it takes to find this
security-relevant information. In particular, the study results
showed that the proximity to functional-related code exam-
ples is a decisive factor. In the context of CSPs, security-
relevant code examples and information should be placed
close to API examples. Alternatively, code comments can
help point developers to security-relevant information lo-
cated elsewhere in the documentation. We also found evi-
dence that the examined novel approach of integrating CSP
examples in non-security API documentation significantly
helps to produce a secure CSP implementation. These re-
sults specifically address API producers to improve their
API documentation in these aspects to support secure cod-
ing practices.
Outline — Our paper is structured as follows: We first intro-
duce CSP in Section 2, discuss related work in Section 3, and
describe our study methodology in Section 4. We present the
results of our analysis and answer our research questions in
Section 5. We outline limitations in Section 6 and discuss
our findings in Section 7 before we conclude the paper in
Section 8.

2 CONTENT SECURITY POLICY (CSP)
CSP was initially proposed by Stamm et al. [38] in 2010.
It became a W3C security standard [21] since 2012 and is
supported by all modern web browsers. CSP’s primary goal
is to prevent, mitigate, and report code injection attacks
such as XSS [7]. These attacks result from executing mali-
cious content on web pages [39]. CSP restricts to include
content for web pages by whitelisting origins for content
that browsers are approved to load. This means that even
if attackers were able to inject content, this content would
not be executed or rendered if it did not match the whitelist.
Since level 2, the feature set of CSP is no longer limited
to code injection mitigation but has been extended to, e.g.,
interface redress vulnerabilities like Clickjacking [40].

CSP directives bind content types to lists of sources
from which a CSP protected web page is allowed to fetch
and include resources of that specific type. CSP specifies
directives like img-src for images, script-src for scripts,
and style-src for styles (cf. Table 1 for a selected list of
specified directives). If a policy directive specifies, e.g., the
source https://some.cdn/ for the script-src directive, the

TABLE 1
List of selected CSP directives web developers can use to declaratively

restrict content types to be loaded from allowed sources only.

Directive Description

connect-src Defines allowed sources for connecting via
XHR, WebSockets, and EventSource.

default-src Is applied as a fallback to content types for
which the according directive is missing.

font-src Defines allowed sources that can serve web
fonts.

frame-src Defines allowed sources for nested browsing
contexts using elements such as <frame> and
<iframe>.

img-src Defines allowed sources of images and
favicons.

media-src Defines allowed sources for loading media
using the <audio>, <video> and <track>
elements.

object-src Defines allowed sources for the <object>,
<embed>, and <applet> elements.

script-src Defines allowed sources for scripts (JavaScript).
style-src Defines allowed sources for style sheets (CSS).
worker-src Defines allowed sources for Worker,

SharedWorker, or ServiceWorker scripts.

protected web page fetches scripts only from this specified
source. If a malicious code injection tries to fetch scripts
from another site, e.g., https://evil.site/, the browser
will refuse to load them.

CSP directives are wide open by default, i.e., if no
specific policy is set, no restrictions apply when fetch-
ing resources for the corresponding content type. The
default-src directive overrides this default behavior.
When no explicit CSP directive is present for a given content
type, the default-src directive comes into effect when
being present. In general, this applies to any directive that
ends with -src.

The source list in each policy directive can specify
sources by the scheme (blob:, data:, or https:), ranging
from hostname-only to a fully qualified URI. Wildcards
are accepted, but only as a scheme, a port, or in the
leftmost position of the hostname. As web pages require
to load a bunch of external resources, the list of sources
can enumerate individual sources separated with spaces.
The source list also accepts four keywords that require to
be specified single-quoted. The 'none' keyword effectively
disables security for assigned content types. The current
origin, but not its subdomains, is matched by 'self'. With
'unsafe-inline', inline JavaScript and CSS is allowed. Ac-
cordingly, 'unsafe-eval' allows text-to-JavaScript mecha-
nisms like the eval() function in JavaScript.

The CSP is a string containing the policy directives that
a web browser should apply to a given web page, e.g.:
content-security-policy: default-src 'self'; script-src

↪→ 'self' https://maps.googleapis.com/

The policy directives are separated with semicolons. Web
pages can use as many CSP directives as they make sense for
the given application and its context. One pitfall, however,
is to make sure that all required sources of a given content
type are listed in a single corresponding policy directive.

CSPs are specified by web developers using HTTP
headers or meta elements in HTML pages. However, the
use of HTTP headers dominates [26]. The HTTP response

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

message transports the policies from the webserver to the
browser. The browser side then enforces them on a page-
by-page basis. Thus, the server needs to send a CSP in
every response that requires protection. The CSP standard
specifies two HTTP response header types for this purpose.
The Content-Security-Policy header transfers the policy
to the browser so that the browser can enforce it. In contrast
to that, the Content-Security-Policy-Report-Only header
instructs the browser to report any violation of the CSP
directive to a specified server endpoint. The latter allows
web developers to test policy effects – without enforcing
them – and to monitor any violation events, which may
indicate resource changes on the service provider side or
attack attempts. Figure 2 contains a complete example CSP,
which is part of an HTTP response message carrying a web
page to the browser.

3 RELATED WORK

We first discuss previous CSP research results on their prac-
tical application and usability. We also summarize related
work dealing with API documentation and eye-tracking in
software engineering research.

3.1 Usability of CSP

In practice, the adoption of CSP is a problem. Large-scale
studies on deployed policies revealed adoption problems,
resulting in low usage rates and comprehensive miscon-
figuration [23], [24], [25], [26], [35]. In 2016, over 90% of
deployed CSPs were not effective, mainly because users
compiled insecure whitelists [25]. Furthermore, a lack of
reporting, harsh policies, vulnerable policies, and frequent
maintenance are identified as problems [26], [35], [36]. To
support developers, Weichselbaum et al. developed a CSP
evaluator [25], [41] that developers can use to check their
policies for security. However, developers still have to create
CSPs by a reverse engineering approach, even with semi-
automated policy generation [23], [25], [42], and problems
in CSP adoption remain [26]. We propose and evaluate a
different approach, in which the API provider takes the
responsibility of integrating a service tailored CSP into the
API documentation.

Although authors of previous work called for research
on CSP design and usability [27], [36], results of usability
studies on the application of CSP are rare. One qualitative
lab study with 30 participants identified usability problems
that occurred when working with CSP [27]. The results
showed that the given information and support by warnings
in browser developer tools, the web development frame-
work and its documentation, the API documentation, and
third party resources from the Internet were not sufficient.
Available documentation resources were not providing in-
formation that participants needed to create a functional and
secure CSP. We address this problem by integrating security-
relevant information into non-security API documentation.
To this end, we adopted the technical design of this study,
which consists of a web development framework with a
default CSP setup, the Google Maps documentation, and
the Chrome browser.

3.2 Security in API Documentation

Based on survey results, Uddin et al. presented ten types
of API documentation problems, mostly related to content
and presentation [32]. In our study, we precisely study these
two aspects, i.e., how the presentation of security-related
content in API documentation affects the security of a web
page using the API. Inzunza et al. compiled a list of seven
essential documentation elements representing minimum
requirements for complete API documentation [43]: “API
Overview”, “Get Started Guide”, “Sample Code”, “Video
Tutorials”, “Document API Reference”, “Document the API
Directives”, and “Document Status and Error Codes”. The
list does not suggest to document security-relevant infor-
mation. In our study, we enhance a Google Maps API doc-
umentation page, representing a “Get Started Guide” and
containing “Sample Code”. As it is a part of an extensive
documentation, it does not meet all the seven requirements.

Meng et al. concluded, after conducting a study includ-
ing interviews and a survey, that developers mainly follow
two different concepts when working with API documenta-
tion [44]. They either adopt a concepts-oriented or a code-
oriented learning strategy. In the context of our study, the
participants clearly showed code-oriented behavior. In an
observational study with 11 developers, Meng et al. fur-
ther studied how developers use API documentation [45].
Based on the results, they proposed high-level guidelines
for designing API documentation with three main aspects:
(1) Enable efficient access to relevant content, (2) facilitate
initial entry into the API, and (3) support different devel-
opment strategies. All guidelines are focused on the main
functionality of an API and do not consider cross-cutting
requirements like security. One important guideline when
supporting different developer strategies is “Signal text-to-
code connections”. This guideline suggests that the connec-
tion between text and code should be easily identifiable by a
suitable design with, e.g., using color-coding to facilitate the
reading transition. To the best of our knowledge, we are the
first to investigate the opposite approach, “Signal code-to-
text connections”. This guideline means that code examples
should provide references to elements in the text, raising
a developer’s awareness for security-relevant information.
Meng et al. also identified the need for “research providing a
more fine-grained analysis of the information units, such as text
versus code examples, which developers attend to when using a
certain section of the documentation” [45]. We address this need
and present, to the best of our knowledge, the first results of
an eye-tracking study offering fine-grained results in how
developers use Web API documentation.

Previous Usable Security studies recommended to
provide software developers with easily accessible and
application-related code examples in the documentation of
security APIs [9], [10], [30], [37]. Mindermann et al. devel-
oped an open-source web platform that collects such exam-
ples for many different cryptographic APIs [46]. Moreover,
the general relevance of solution-oriented code examples
in software development proposed by other developers
manifests in the popularity of online question and answer
platforms [29] also for security professionals [47].

Based on this knowledge, this study examines whether
and how security-relevant CSP information can be inte-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

grated into online documentation of Web APIs, which do
not have a primary focus on security, in a usable way. This
study’s primary goal is not to reconfirm that code examples
improve the usability of APIs and their documentation.
Instead, we want to study how we can increase the attention
of developers to security-relevant information through ap-
propriate API documentation extensions and to what extent
this can contribute to the implementation of secure CSPs.
Therefore, by placing security-relevant information near
and even inside functional-related code examples, we also
study if the developers’ focus for these vital documentation
components can be utilized for this purpose.

3.3 Eye-Tracking in Software Engineering Research

Since 2006, the use of eye-tracking in software engineering
research has steadily increased as a method to study vari-
ous topics, including program/model understanding, code
review, and debugging [48]. Eye-tracker-recorded gaze data
show both the target of the participant’s attention, and the
effort and time required to understand the stimulus. Eye-
tracking enables an objective, quantitative measurement of
the eye-tracking process in real time, without any inten-
tional filtering by the study participants. Therefore, eye
trackers help researchers to examine processes and inten-
tions that participants cannot articulate [49]. Thus, they can
complement and enhance data that was collected with semi-
objective data collection methods (e.g., screen and audio
recordings) and subjective data collection methods (e.g.,
surveys and questionnaires). In other words, eye movement
measurement provides additional insight into participants’
actions and reasons for them, based on where they focused
their attention during a task.

Recent studies review and illustrate the use of eye-
tracking in software engineering research and provide guid-
ance [48], [50], [51], [52]. Working with code examples
as part of API documentation shares aspects of typical
eye-tracking application areas in software engineering re-
search [52]. The developers need to comprehend a given
program, review code examples, and own code implemen-
tations. Previous studies focused, e.g., on debugging and
reading code [53], [54], [55], [56], and reading compiler
error messages in the console [57]. Used metrics in eye-
tracking studies in software engineering were often incon-
sistent [50], [51], making different studies difficult to com-
pare. Furthermore, as an empirical method, eye-tracking is
context-sensitive. Contextual aspects like the programming
language and coding style can impact the visual effort when
working with buggy code [53], [55]. Our study setup uses
a Go framework and JavaScript code (cf. Section 4). Also,
the gender and experience of participants impact the way
of source code reading [54], [56]. We analyze our sample
in Section 5.

Considering recent application of eye-tracking in soft-
ware engineering research and the available guidelines, we
first ensured that eye-tracking is an appropriate additional
data source to answer our research questions. As mentioned
in the beginning of this section, most available research
used eye-tracking to study tasks related to programming
and debugging as well as reading code and models. In
our research, we focus on API documentation, which has

been comparatively underrepresented in the literature to
date (see Section 3.2). Although there are not many eye-
tracking studies on API documentation, the methods are
similar to studies that focus on reading code at various
levels of abstraction – including prose pseudo-code. We
oriented our methodology on previous eye-tracking studies
related to reading documentation or code with a particular
focus on identifying Areas of Interest (AOI) that attract more
attention in the documentation. In addition to screen/au-
dio recordings and post-task questionnaires, we chose eye-
tracking as an objective measure to answer RQ1 and RQ2 in
particular. Eye-tracking allowed us to quantify developers’
behavior when working with API documentation. Thereby,
we were able to study placement effects of security-relevant
CSP information and measured the elements in the docu-
mentation that developers pay attention to.

As in previous eye-tracking studies, we used the number
of fixations in the whole stimulus or in specific parts of it—
the so-called fixation count—to find the AOIs [58], [59], [60].
A fixation is a spatially-stable eye-gaze during which the
participant’s visual attention is focused on a specific area of
the stimulus [61]. To analyze fixation counts, we used heat
maps as visualizations that map gaze data to the stimulus.
See Section 4.5 and Section 4.10 for more details on the
concrete setup and captured as well as analyzed metrics.

Our intention is to understand whether conventional
API documentation can support the awareness and transfer
of cross-cutting concerns, such as security. We also intend to
understand whether the placement of such non-functional
information in the documentation has an impact on de-
veloper adoption. This is particularly challenging because
neither the API documentation nor the programming task
itself includes security as a primary objective. Hence, the
Average Fixation Duration (AFD), and related metrics used
to measure and compare the amount of visual effort (or
difficulty) to perform a task [58], [62], [63], [64], [65], [66],
[67], [68], [69], [70], [71], [72], [73], [74] and to find the AOIs
that are most important for the participants to perform their
tasks [63], [64], [65], [74], can not be adopted. This is due to
the fact that there is no direct task to include a CSP, but this
is rather implicit.

4 METHODOLOGY

In a between-group lab study, we asked our participants to
solve four web development tasks. We provided them with
a web development framework for this purpose. Several
security measures, including a strict CSP, went into effect
by default in this framework, intending to support users
to implement a secure application. The core of the study is
the integration of a Google Map into a web page. In this
step, the default security setting from the server side inter-
venes and prevents browser clients from loading external
resources like scripts, styles, fonts, or images. This means
that participants have to react to this default CSP security
setting during the experiment because it prevents them
from solving the given primary programming tasks. This
behavior corresponds to real-life implementation attempts
of secure defaults to help developers bring security features
into their applications [28]. Also, this situation creates a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

need for information and thus a motivation to work with
the documentation.

Google Maps had been chosen as it is a widespread API
and has a mature and well maintained documentation. In
addition the API allowed us to keep tasks appropriatly short
for a laboratory study with voluntary participants, but was
complex enough for studying the research questions.

For the web page to display the map, participants have
to configure a CSP whitelist for third party resources cor-
rectly (cf. Section 2). Previous research has shown that com-
puter science students and junior developers with little pro-
fessional experience have severe difficulties to cope with this
security default because they needed information that was
missing in the API documentation [27]. To support the par-
ticipants with the secondary security task of implementing
a secure CSP for their web page requirements, we enhanced
an original Google Maps API documentation page. The
enhancement contained required information, including an
API specific CSP example. We integrated security-related
information in three different ways (cf. Section 4.1) into the
original Google Maps API documentation and examined the
effects of these different versions.

The study took about two hours per participant. It
consisted of a preliminary discussion, a briefing, the ex-
periment, a structured interview, and a debriefing. The
experiment was limited to a maximum time of one hour.
The studies were all carried out by the first author.

4.1 Documentation and Study Conditions

We tested the original Google Maps API documentation
and three modified versions of it. We describe the four API
documentation variants, each representing a different study
condition, in the following (cf. Table 2).
(G1) CONTROL: The original documentation page [75]1,

i.e., the control condition, starts with a headline, a
short introduction, and shows a Google map as a
practical example of the API. The developers can im-
plement this example by simply copying and pasting
the corresponding code from the Try it yourself section.
For quick access, the Getting started section provides
hyperlinks that lead directly to three following sec-
tions, which explain step-by-step details of the code
example. Step 1 describes the structure of the HTML
page, Step 2 the JavaScript code with API calls, and
Step 3 the API key handling. The latter regulates access
to the service and serves for billing purposes. At the
very bottom of the page, readers will find the Tips and
troubleshooting section, which outlines known issues
when using the API. This page of the Google Maps API
documentation does not contain any security advice
other than instructions on how to get and use the
mandatory Google API key.

Aiming to support developers in adopting secure pro-
gramming practices of web engineering, we specifically
changed the content of the original Google Maps API docu-
mentation and investigated the effects in this lab study.

1. At the end of 2019, Google changed its website design. However,
the content of the page has not changed at the time of writing. The
original website used in the study is accessible via Internet Archive [76].

We have taken care to select design options that are prac-
tically feasible. The primary purpose of the documentation
is to support users in implementing a Google map. There-
fore, being realistic, we excluded for the study design that
the page can present security-relevant aspects prominently
in a section at the topmost positions. This decision raises
the practical problem of how to integrate security-related
information in a way that users will find it when they need
it. Thus, focusing on RQ1, we have chosen approaches that
differ in the position and integration style of the security-
relevant content.

TABLE 2
Overview of the documentation structure and locations where CSP

information is added in each study condition. The documentation in
the CONTROL condition does not contain any CSP information. A ’∗’
indicates structure elements appearing identical in all four conditions.

Study Condition Documentation Structure

∗ Adding a Google Map with a Marker to Your Website
∗ Introduction
∗ Try it yourself
CODE-COMMENT Code Comment: Notes on Content Security Policies
CODE-COMMENT + Link to Tips and troubleshooting
∗ Getting started
∗ Link to Step 1
∗ Link to Step 2
∗ Link to Step 3
STEP4 Link to Step 4
∗ Step 1: Create an HTML page
∗ Step 2: Add a map with a marker
CODE-COMMENT Code Comment: Notes on Content Security Policies
CODE-COMMENT + Link to Tips and troubleshooting
∗ Step 3: Get an API key
STEP4 Step 4: Set a Content Security Policy (CSP)
STEP4 CSP Header String (raw)
STEP4 CSP Header String (pretty print with comments)
∗ Tips and troubleshooting
TIPS,CODE-COMMENT Content Security Policy (CSP)
TIPS,CODE-COMMENT CSP Header String (raw)
TIPS,CODE-COMMENT CSP Header String (pretty print with comments)

We designed and tested three different approaches to
display CSP information in the documentation (cf. Figure 1):
(G2) TIPS: We added a subsection in the Tips and trou-

bleshooting section at the bottom of the documentation
page.
The CSP section explains how a developer can iden-
tify problems and gives a recommendation for action.
Since problems with the CSP configuration typically
manifest themselves in the fact that implemented func-
tionalities do not work, we tried to pick up the user
with the wording "If the map does not show up..."
(cf. Figure 2). The formulations also use the keywords
“directive”, “hash”, and “inline”, which the Chrome
browser developer tools use in their CSP warnings. We
could have written detailed step-by-step instructions
on how to define a CSP in our study web framework.
However, since it is not practical for an API provider to
do this for every available web framework, we chose
a general formulation. The section provides a code
example that developers can copy and paste directly
into their development environment. It also provides
an illustrative example that explains the individual
CSP components. The end of the section contains links
to a comprehensive CSP guide from Google [41] and
to a tool that checks the security of a CSP [25].

(G3) STEP4: We added a fourth section entitled Set a Con-
tent Security Policy (CSP) to the original documentation

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

Fig. 1. Overview of the documentation and locations where CSP information is added in each study condition.

page and placed it before the section Tips and trou-
bleshooting. The content of the section is identical to
that of the TIPS condition. We also added a link to
this section to the navigation sidebar and the “Getting
started” section (cf. Figure 3).

(G4) CODE-COMMENT: Based on observations from the
pilot studies, we assumed that the participants would
likely use the Google Maps code example in the
documentation to solve their primary programming
task. Hence, we tested the effect of a source code
comment (cf. Figure 4) in the code examples of the
API documentation.
We assumed that this approach could help develop-
ers who would potentially copy sample code with-
out reading the documentation. The comment briefly

points out a potential problem and provides a link to
the CSP section. Identical to the TIPS approach, we
placed the CSP section at the end of the documentation
page.

4.2 Preliminary Discussion and Ethics

In the preliminary discussion, the study participants first
read and signed a consent form confirming that they were
of legal age. There was no formal IRB (institutional review
board) process at our university. Nevertheless, we followed
the data handling requirements of the European General
Data Protection Regulation (GDPR) [5]. The study required
video and audio recording for exact time measures. The data
has been stored on encrypted hard disks to ensure confi-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

• If the map does not show up, one reason might be a CSP is set by your web server and enforced by your web
browser. Check the Developer Tools Console in your web browser for error messages to see if elements are
blocked.

• You need all of the following CSP directives to configure your web server for the Google Maps Demo code on this
page and allow Google maps resources on your web site.

• You can open the Developer Tools and then reload your page. The Console tab will contain error messages with the
correct sha256 hash for each of your refused inline elements. Alternatively, you can use a hashing tool.

CSP Header String (raw):

CSP Header String (pretty print including comments):

• For an advanced guide to creating a CSP, read the Content Security Policy guide.

• Use the CSP Evaluator to check if a CSP serves as a strong mitigation against cross-site scripting attacks.

default-src 'self'; script-src 'self' https://maps.googleapis.com/ 'sha256-purvb6auV8U0MiZWQ6SKq7Tjza

default-src // Secure default
'self';

script-src // JavaScript from your host

'self'

// Maps JavaScript API
https://maps.googleapis.com/
// Inline script hash for the Demo code on this page
// If you change the script in the Demo code
// this hash needs to be updated
'sha256-purvb6auV8U0MiZWQ6SKq7TzalqXH7qN1KpVUeXr6E=';

style-src // Styles from your host

'self'
// Fonts specification
https://fonts.googleapis.com/css
// Inline style hash for the Demo code on this page
// If you change the style in the Demo code
// this hash needs to be updated
'sha256-rXxm3Q5rCvjaI3w7x0f/JJDqGECh8mxg68PKLP8Jo7pQ='
// Styles
'sha256-UvsJ5gtL0c/whxmyVt4YoNv7YnPUd0tANZOlq3NshXE='
// Control active
'sha256-VjKqXV9i0mo5RzxvaQpz7qQA91PkjLVqLQGYNI4Cc/I='
// UI hover effects
'sha256-g9aHNH7iF2hhGZYtVVd5mKQSnyLPmXWw5gwiuxBVonI='
// Styles
'sha256-2WQZQFa8KGAig8CPptpS8JDqetQ2jb5arMlI6fTGWiU='
// Media print
'sha256-/VVOq+Ws/EiUxf2CU6tsqsHdOWqBgHSgwBPqCTjYD3U='
// Styles
'sha256-a2VR/Wq1VPr0+3GRY+lEmAQm7wjwwnDtPpcCPs2zTrw='
// Styles
'sha256-mmA4m52ZWPKWAzDvKQbF7Qhx9VHCZ2pcEdC0f9Xn/Po='
// Google Maps JavaScript API error
'sha256-+1AnUMTxYqnxCnuWd5ie3PIFYaEJTJj6eAy7VkZ7jyc=';

img-src // Images from your host

'self'
// UI images using data scheme
data:
// Satellite images
https://maps.gstatic.com/mapfiles/
https://maps.googleapis.com/maps/
https://khms0.googleapis.com/kh
https://khms1.googleapis.com/kh;

font-src // Fonts

https://fonts.gstatic.com/;

object-src // Secure default

'none';

Fig. 2. CSP section with guidance and CSP example integrated into the
original Google Maps JavaScript API documentation and tested in the
conditions TIPS, STEP4, and CODE-COMMENT.

Getting started

There are three steps to creating a Google map with a marker on your web page:

1. Create an HTML page

2. Add a map with a marker

3. Get an API key

4. Set a Content Security Policy (CSP)

You need a web browser. Choose a well-known one like Google Chrome (recommended), Firefox, Safari or Internet
Explorer, based on your platform.

Fig. 3. “Getting started” section with an additional link to the CSP section
integrated into the original Google Maps JavaScript API documentation
and tested in the STEP4 condition.

/**
 * Notes on Content Security Policies
 * If the map does not show up, check the Developer Tools Console in your web browser
 * for error messages to see if elements are blocked by a Content Security Policy
 * (e.g., default-src 'self';). Find tips and troubleshooting at:
 * https://developers.google.com/maps/documentation/javascript/adding-a-google-map#CSP

 */

Fig. 4. Source code comment integrated into the original Google Maps
JavaScript API documentation and tested in the CODE-COMMENT
condition.

dentiality. Participants can request deletion via a provided
random token.

We framed [77] the tasks in order to explicitly emphasize
to our participants that they should implement a secure
solution. Therefore, the study moderator pointed out at the
end of the preliminary discussion that “it should be a secure
solution”. By pointing this out, we tried to ensure that the
participants see the application’s security as a positive and
desired aspect. We kept the term "secure" general and did
not describe it by a specific threat model. We consider this
to be a common requirement in web development, where
a wide range of threats exists [7]. It is also questionable
whether a threat model is generally available to developers
when they take on the task of implementing a web applica-
tion securely. In our view, API documentation has a special
responsibility to provide such information. Finally, we did
not want to influence the participants in the subject matter
by mentioning the term CSP, as we did not want to influence
the handling of the documentation by a specific security
task. In order to still have all groups focusing on a protec-
tive CSP as security measure, in the study, by constraints
of the web framework, our participants were required to
consider CSP. The CSP by default setup prevented partici-
pants solving their programming tasks without considering
CSP. However, they could decide to deactivate the security
mechanism.

During the study, the participants tried to implement
or search only for the CSP security mechanism. This ob-
servation confirms that the framing and the study design
proved to be appropriately tailored to our research ques-
tions (cf. Section 5.3).

4.3 Development Environment Briefing

We briefed all study participants on the experiment’s de-
velopment environment to mitigate potential differences in
their experience with the tools of the study environment.
The 15 minute briefing included the Visual Studio Code in-
tegrated development environment (IDE), the folder and file
structure of the Go [78] framework, required Go packages
(app dependencies), and the Developer Tools of the Chrome
browser. Participants were allowed to ask questions about
the development environment. After the briefing, the study
moderator asked them to read through the four tasks of the
experiment. The participants were also able to ask questions
for understanding the tasks. The study moderator asked the
developers to think aloud and explained the meaning of the
term. Then, the moderator calibrated the eye-tracking (9-
point calibration), started the experiment, and left the room.
The moderator followed the experiment via video, audio,
and screencast in an observation room near the study room.

4.4 Programming Tasks

The experiment consisted of four programming tasks
(cf. Figure 5). The first two served as warm-up tasks for
the study participants to get used to the study situation.
We selected short tasks that we expected our participants to
complete quickly and that did not relate to the framework’s
default CSP setting. In task one, the participants integrated
a web page favicon. In task two, our participants used
Cascading Style Sheets (CSS) to integrate an image as a
background for the page.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

Fig. 5. Illustration of the four study tasks.

In task three – the main task – the participants had
to integrate a map into the web page using the Google
Maps JavaScript API. They needed to implement the tutorial
example of the official Google Maps API documentation.
The task description provided an API key for the service
and a link to the web page. However, due to the default
CSP, the browser did not execute the code example from
the documentation. As a result, the browser displayed a
warning inside the browser’s JavaScript console. For the
browser to display a map, the required secondary task – not
mentioned in the task description – was to compile a CSP
whitelist containing the required Google maps resources.
Except in the CONTROL group, we provided the appropri-
ate CSP for the tutorial example in the documentation. Thus,
this condition represents the current real-world situation
and allows us to measure effects of the documentation
approaches.

The final task four was to set other coordinates for the
map and a marker. To complete the task, the participant had
to replace the CSP hash value because of the changed inline
JavaScript code. This task should answer the question of
whether the participants were sufficiently supported by the
code example to be able to adapt it to their requirements,
including a securely customized CSP.

We did not implement any real risk for the experiment,
as it would have been somewhat artificial in the labora-
tory situation anyway. Hence, the study tasks missed a
clear security and privacy context. Previous work found,
however, that fewer study participants ignored security in
laboratory studies when it was an explicit part of the task
description [79]. We considered this in our study design and
framing (see Section 4.2).

4.5 Implementation and Study Environment

The study took place in our usability lab. The developers
worked with a Windows computer and two computer mon-
itors. On the left monitor, they used the Visual Studio Code
IDE for programming with the Go framework. We enabled
code completion, and syntax highlighting and parsing for
the code editor. We provided a code framework for the tasks
to keep complexity low. Like most web development frame-
works, the Go framework implemented the model view con-
troller pattern [80]. We integrated security functionality with
the Secure middleware [81] and kept the secure CSP default

configuration default-src 'self'. On the right monitor,
the participants used the Chrome browser with Internet
access and Chrome’s integrated developer tools. We imple-
mented the changes of the official Google Maps developers
documentation web page with three custom Chrome exten-
sions, one for each of the three CSP conditions TIPS, STEP4,
and CODE-COMMENT. The extensions monitored the re-
quested URLs and replaced the original documentation with
the corresponding CSP-extended variants, according to the
condition. The participants accessed the documentation as
they usually would. The software iMotions7 recorded eye-
tracking data for the browser monitor with a Gazepoint
GP3 HD sensor (150Hz sampling rate, 0.5 – 1.0 degree of
visual angle accuracy). We equipped the workplace with a
microphone and two cameras to record the experiments and
streamed them live to the study moderator. The moderator
annotated activities, statements, and key events during the
sessions.

4.6 Structured Interview

After the experiment, the study moderator conducted a
structured interview with each of the participants. The in-
terview was structured into three parts. Part one contained
questions regarding the experiment. We collected previous
experiences in the field of software development in the
second part. In the third part, we collected demographic
data.

4.7 Debriefing

The study concluded with a twenty minute debriefing
session. The study moderator explained the participants
the programming problems they experienced in the study.
The dialogue clarified the purpose of the study and raised
awareness for the topic of Usable Security. The moderator
asked every participant not to share the contents of the
study with other persons.

4.8 Pilot Studies

We developed and improved the study design by piloting
it twice. For both rounds, we invited two members of our
working group, who were not involved in the study design.
On the technical side, the pilot studies helped to adjust
the hardware setup, and to fix minor bugs in the web
development framework. On the usability side, we could
clarify descriptions of the briefing and the task descriptions,
and improve explanations and elements of the CSP section.
Most importantly, the observations from the pilot studies led
us to the idea of integrating security-relevant information
into the API documentation in different ways, resulting in
the four study conditions.

4.9 Recruiting and Compensation

We conducted the study at the end of a web programming
course. Data and application security was not part of the
curriculum. Participation in the study was an offer for a
total of 103 participants in the course to reduce the workload
of a semester project. In return, several required project
features were waived. It was not a prerequisite for passing

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

the course. Also, participation did not replace a graded
course component. Course attendance was required for
admission to an exam. Since we had no means to offer other
compensations like vouchers, we felt this was appropriate.
We announced the study in the lecture as a study on web
development with the Go programming language. Students
interested in study participation could register online for an
appointment. They chose one of the offered appointments
themselves, and we assigned them round-robin to the four
groups. During the study, we offered water and candy bars
for their personal well-being.

4.10 Performance Measures
We used several metrics to evaluate the experiment. With
eye-tracking, we measured the total time participants spent
on the API documentation page and used the gaze data to
determine the areas of the documentation that participants
paid visual attention to. We measured the time participants
worked on each programming task by analyzing the video
recordings. The study moderator took notes on key mo-
ments while watching the study live stream. After the study,
we used the session recordings to check and correct each
timestamp precisely before using them for statistical analy-
sis. To gain some supplementing insights on our qualitative
laboratory study, we evaluated the structured interview
answers.

5 ANALYSIS

The analysis answers the research questions formulated in
the introduction. First, we characterize the study sample
based on the demographics and software development ex-
perience. Then, we present the results of the experiments.
For our analysis, we set 0.05 as the threshold for statistical
significance, i.e., p < 0.05 is significant.

The study took place over a period of four weeks from
June to July 2019. 49 participants took part in the study
(41 male, 8 female). Ten participants were in the CONTROL
group and 13 participants each in the other three conditions.
The participants were students and mainly reported to
study in the sixth semester (SD: 2). They were, on mean
average, 25 years old (SD: 4). The standard period of study
is seven semesters. 38 recruited participants, with more than
five study semesters, were near the end of their Bachelor’s
degree. Thus, our participants were typical candidates who
start their professional life as junior software developers
after their Bachelor’s thesis. The fact that 17 of the students
(35%) had already been paid for programming jobs before
the study supports this assumption.

The participants reported having four years of program-
ming experience on average (SD: 2). All of them started
learning the Go programming language in the web pro-
gramming course about half a year before the study and
implemented at least one Go web application. However,
23 had also developed other web applications before. Thus,
they had a mean JavaScript experience of two years (SD: 2).
Even if the participants were assigned round-robin, the
groups were balanced in terms of demographic data and
previous development experience.

Results from the structured interview show that the
developers of the study sample had little experience in

Fig. 6. RQ1: Total time each group spent on the documentation site,
based on gaze data.

applying data and application security measures. None of
the participants named CSPs when being asked about the
security measures they had ever considered in the devel-
opment of software. When being asked about previous
experience with CSPs, only three stated that they had. All
three remembered problems with the CSP implementation.
Participant G4P5 explained for example2:

“I briefly touched on it, but I mostly let it go because it
was too complicated, and it didn’t want to work.”

Eleven participants stated that they never considered any
security measure.

In the following, we present the study results ordered
by the research questions. We answer the corresponding
research question after the results have been presented.

5.1 Information Placement Effects (RQ1)

During the programming tasks, participants spent a mean
average of seven minutes on the API documentation page
(SD: 3). There were no significant differences between the
groups. (Kruskal-Wallis H(3) = .727, p = .867; cf. Figure 6).

5.1.1 Fixation Distribution
We analyzed the regions that our participants focused in
the corresponding API documentation. The eye-tracking
sensors measured 150 individual gaze points per second .
If gaze points are close together in time and space, this is
an indication for visual attention. The eye-tracking software
clustered these gaze points to “fixations” for a defined area
of interest.
Figure 7 shows the participants’ fixation distribution on
the documentation page per each of the four conditions
(1) for all elements (all), (2) only for elements of the original
documentation (original), and (3) only for the added CSP
elements (CSP). Consistent to the time spent, there were
no significant differences in the visual attention that the
groups paid to the entire documentation page (Kruskal-
Wallis H(3) = 2.538, p = .468). We neither found significant
differences between the three groups in the distribution of
fixations across the CSP documentation elements (Kruskal-
Wallis H(2) = 2.040, p = .361).
However, we found a significant difference in the distri-
butions of fixations on the elements of the original page
(Kruskal-Wallis H(3) = 9.243, p = .026). Dunn-Bonferroni
tests show that group CONTROL and STEP4 (z = 2.553, p =
.011, r=.532), as well as CONTROL and CODE-COMMENT
(z = 2.451, p = .014, r=.511), differ significantly both with

2. All quotes were translated from German into English.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

Fig. 7. RQ1: Fixation distributions of the conditions for the entire
page (all), elements of the original documentation (original), and
added CSP elements (CSP). Differences between CONTROL, and
both STEP4 and CODE-COMMENT were significant for the original
elements.

an effect size over 0.5. From these results, we conclude that
the characteristics of the conditions led to a shift of visual
attention to the CSP documentation elements. The designs
of the groups STEP4 and CODE-COMMENT are suitable to
transport the security-relevant information to the developer.

5.1.2 Time to Find CSP Documentation

Fig. 8. RQ1: Time to CSP Documentation after starting task three.
CODE-COMMENT participants were significantly faster than those of
TIPS.

As presented before, the statistical results for the visual
attention that the groups paid to the entire documentation
page and the time spent on it did not show significant
differences between the three CSP groups. However, there
were significant differences in the time it took the partici-
pants after starting task three to find the CSP documentation
(Kruskal-Wallis H(2) = 9.048, p = .011; cf. Figure 8). Dunn-
Bonferroni post-hoc tests showed a significant difference
between the TIPS and CODE-COMMENT group (z = 3.0,
p = .003, r=.671), with an effect size greater than 0.6.

5.1.3 Effect of Code Comment and Link
Ten out of 13 participants of the CODE-COMMENT group
copied the CSP code comment from the documentation and
inserted it into their IDE. Three deleted it, two immediately
after pasting and another one after a few minutes:

“I’ll delete all the unnecessary comments. It’s just an-
noying.” (G4P1)

We found the code comment in seven results. However,
nine of 13 participants became aware of the documentation
by the reference in the code comment:

Fig. 9. RQ2: Heat map showing the visual attention intensity on the
Google Maps API documentation, aggregated for all participants in each
of the four study conditions.

“This is beautiful here, just as you wish. You couldn’t
have a simpler bug-fix.” (G4P7)

Two CODE-COMMENT participants found the documenta-
tion by scrolling down the site. Another two did not find the
documentation at all, compared to four in the TIPS group.
Only three developers in the STEP4 group found the CSP
elements by clicking the “Getting started” link. In total,
ten participants directly detected the note on the browser
developer tools from the CSP documentation. Thus, they
directly found the CSP warning messages in the browser
console and were able to identify their problem.

Thus, we conclude for RQ1, that placing security-related
CSP information has an impact on the time it takes to find
the required information. Remarkably, security-related in-
formation and code examples prove to be difficult to detect
if they are placed too far away from the API code examples.
Participants gave their initial attention to the functional
code example to solve programming tasks (cf. section 5.2).
In the further course, the participants searched for more
information using individual approaches. Starting from the
previously used code example, they usually scrolled further
down the document skimming the contents. In the process,
participants frequently switch attention between the docu-
mentation and their code. A considerable amount of active
searching is required to bridge longer distances between
functional code examples and security-related information.

5.2 Areas of Attention (RQ2)

Based on the fixations, the heat maps show the distribution
of visual attention inside the four tested API documen-
tations (cf. Figure 9). The green, yellow, and red colors
represent the visual attention intensity from low to high in
ascending order. Blue bars, on the left side of each tested

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Fig. 10. RQ2: Box plot diagram of fixation distribution for parts of the
documentation per each condition.

documentation, highlight our added CSP documentation el-
ements. We answer RQ2 using the heat maps by comparing
the areas of visual attention of our experimental groups
(cf. Figure 10).

In the main task of the experiment, the participants
opened the Google Maps API documentation. After that,
they started reading and explored the top of the documen-
tation web page. However, they did not strictly read the
page in the intended order from top to bottom. All groups
skipped page areas due to their selective search behavior for
the task solution, i.e., they scrolled and repeatedly visited
the page.

The participants paid most visual attention to the code
snippets in the sections “Try it yourself”, “Step 2,” and
“CSP”. All red areas in the heat map, which indicate the
most visual attention, are related to code examples. The par-
ticipants immediately found the Google Maps code example
and started adapting it to their development task. This be-
havior corresponds to the primary task of implementing the
map and the more complex secondary task of implementing
a CSP.

In the STEP4 and CODE-COMMENT groups, the par-
ticipant’s visual attention shifted to the CSP areas of the
modified documentation. The middle page areas clearly had
fewer points of primary visual attention than the other
areas. Participants of the CODE-COMMENT group con-
centrated their visual attention to only eight main areas
compared with ten in the STEP4, 12 in the CONTROL,
and 14 main areas in the TIPS group. The code comment
itself is not part of these areas. The comment only needed
short attention, as it simply referred to the “CSP” section.
Participants of CONTROL and TIPS groups searched more
for information solving their problem in original page el-
ements than those participants of the other conditions (cf.
Figure 7). Thus, they repeatedly focused on the Google
Maps code examples in the sections “Try it yourself” and
“Step 2”. Group TIPS is in chapter “Step 2” more similar to
the CONTROL group.

The green areas in Figure 9 show that the participants
worked with all elements of the site but with limited visual
attention. This impression is correct for the upper elements,
including “Step 1”. But it is only limited right for the areas
below because some participants did not regard these. Nine

participants of the three groups with CSP elements did not
see or find the CSP section.

To answer RQ2, based on these results, we conclude
that the developers of our study were focused on code
examples. They mostly skimmed the documentation while
searching for a quick solution to their programming task.
One participant accurately described this behavior in the
interview:

“There’s a page where they explain all this [CSP]. But
honestly, I didn’t read it carefully. I just looked for the
solution!” (G4P6)

We observed that the participants were motivated to solve
the tasks even if they searched for required information fol-
lowing the least effort approach. We consider this behavior
legitimate in real programming contexts as well. The time
limit of one hour was appropriate for most participants to
deal with the documentation without time pressure at the
beginning of task three (cf. section 5.3.1). Also, to counteract
a sense of urgency, the study moderator told each partici-
pant before the experiment that they could do no wrong in
the study.

5.3 Programming Task Results (RQ3)
We first analyze how much time the developers spent on
each task within the overall time frame of one hour. Next,
we evaluate the extent to which the tested approach could
support the developers in achieving functional and secure
results. Then we summarize CSP integration problems.

We rated the tasks as functional by the following criteria:
In task one if the favicon was displayed, in task two when
the background image was visible, and in tasks three and
four if the Google Map appeared on the web page.

Focusing on RQ3, the rating of secure task solutions
was limited to the CSP configurations. We evaluated the
security of final CSP configurations applied for task three
and four by criteria proposed and applied by Weichselbaum
et al. [25]. The sample solution from the CSP documentation
(cf. Figure 2) was also based on these characteristics and was
therefore considered secure.

In this study we observed that the participants tried
to implement or search only the CSP security mechanism
suggesting that our task design and framing were effective.
Moreover, we found the following insecure CSP configura-
tions: (1) intentionally disabled, (2) unintentionally disabled
because of syntax errors, and (3) ‘unsafe-inline’ was used
without a nonce or a hash. All solutions could be un-
ambiguously rated without discriminating potential secure
approaches. Briefly, the existing solutions were either clearly
non-functional, functional but insecure, or functional and
based on the sample solution from the CSP documentation.
Table 3 shows the detailed rating results for functionality
and security.

5.3.1 Time Spent on Tasks
The programming tasks evaluation shows that most of the
participants handled the warm-up tasks well. All devel-
opers solved task one in a mean average of six minutes
(SD: 4), and only one developer each in the TIPS and CODE-
COMMENT groups was unable to implement a functional
solution for task two. Some participants in these two groups

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

TABLE 3
RQ3: Programming task results for each condition and in total.

CONTROL TIPS STEP4 CODE-
COMMENT

Total

Number of Participants 10 13 13 13 49

NUMBER OF RATED TASK SOLUTIONS
Task One: Functional 10 13 13 13 49
Task Two: Functional 10 12 13 12 47
Task Three:

Functional 6 2 8 4 20
Functional and Secure 0 2 5 3 10

Task Four:
Functional 6 2 3 3 14
Functional and Secure 0 2 3 2 7

spent a comparatively long time on the second task because
they had difficulty debugging their entries in the CSS file.
On mean average, developers worked for 11 minutes (SD: 9)
on task two. Participants spent a mean average of 38 min-
utes (SD: 12) on the main task three. A total of 17 people
started task four and worked on it for 8 minutes (SD: 5)
until they either reached the total study time of one hour, or
finished the tasks.

5.3.2 Functional Task Results
In the first attempt, the participants copied the Google Maps
sample code (complete or partial) from the documentation
and pasted it into their development environment. How-
ever, the low numbers of functional and secure solutions of
tasks three and four reflect that the CSP default mechanism
was a problem for the participants (cf. Table 3):

“I am confused, very confused, I just have to copy, and
it has to appear there now. Why am I blocked?” (G2P4)

20 and thus less than half of the study participants were able
to implement a functional solution for the third task. Eight
of them disabled the CSP mechanism in their framework.
Participant G1P9 commented:

“I can’t get it right! Why? Okay, let’s do it another
way. Let’s just say ’screw security’ for now. I’m gonna
put a ’none’ here, and then we’ll move on - just for the
record.”

After disabling CSP, changing the coordinates in the final
task was easy for these developers. Nevertheless, we were
able to lower the number of CSP deactivations by the
framing in the preliminary discussion.

“Since it was just said that the site should be secure, I’ll
do that!” (G3P5)

Overall, the CONTROL group achieved more functional but
insecure solutions in task four than the other groups.

5.3.3 Functional and Secure Task Results
Fifteen of 49 participants only copied and pasted the CSP
header string from the documentation and two only used
parts of the illustrative CSP example. In contrast to that,
eight participants copied and pasted both CSP versions dur-
ing their attempts to integrate the CSP into the framework.
A total of ten developers, who did not disable the CSP mech-
anism, were able to integrate a secure and working solution
into the web page (cf. Table 3). However, they subsequently
faced further problems of understanding when dealing with
the customization task:

TABLE 4
RQ3: Contingency table for functional and secure solutions and used

CSP documentation in task three and four. The solutions were
significantly more functional and secure with CSP documentation.

Functional and Secure Solution
Task 3 Task 4

true false true false

Used CSP Documentation true 10 20 7 23
false 0 19 0 19

“But why is it a security problem if all I do is change
the coordinates?” (G3P7)

Seven of them understood the CSP concept to such an
extent that they were able to achieve a functional and secure
solution.

All four groups had worked with the documentation
for about the same amount of time (cf. Section 5.1). Also,
we did not see any major differences in the numbers of
functional and secure solutions between the groups with
CSP documentation. For these reasons, we compared the
effect of CSP support on the security of task solutions across
all groups (cf. Table 4). Fisher’s exact test is significant for
both task three (p=0.004) and task four (p=0.0338).

Thus, the security-relevant CSP information significantly
improved the security of the solutions. 33% of the partici-
pants who worked with the CSP documentation were able
to implement a CSP securely in task three, and 30% in task
four. None of the CONTROL group participants, who did
not have the support of our CSP documentation approach,
achieved a secure solution.

However, these results also clearly show that the major-
ity of the participants would have needed more support.
Our approach could only help to bring security-relevant
information to developers and thus provide them with a
sample CSP. From the moment of integration into the frame-
work, the experiment showed that there were still other
factors where support was lacking, which we summarize
below.

5.3.4 CSP Integration Problems
The integration into the Go framework, especially where
the CSP code example had to be inserted, turned out to be a
problem:

“I understand that I have to copy this string somewhere,
I just don’t know where.” (G2P12)

Searching for a solution on the Internet, participants mainly
found meta-tag CSP examples, although the use of HTTP
headers dominated in practice [26]. However, meta-tag CSP
examples are suitable as self-contained code examples that
can be easily integrated into HTML files and tested in a
browser. When defining a secure CSP using a meta tag,
which was the case for nine of 49 participants, the CSPs
of both – the configuration file and the meta tag – get into
effect. The study participants did not understand this stan-
dardized [21] behavior of the development environment:

“And how do I get it [the browser] to just take that? [...]
It ignores the line completely, is that possible?” (G3P8)

It was difficult for the participants to trace the origin of the
policy, i.e., server-side or client-side. A hint, that a CSP was

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

set on both server and client side, was missing to resolve this
double policy confusion. Answers from the Stack Overflow
community were also not considered helpful:

“Ok, that’s how it works, but I don’t think that’s how
the security policy was meant to be. But I found it very
hard to figure out how to configure something via Stack
Overflow.” (G1P5)

Our results also confirm usability problems with CSP warn-
ing messages in the Chrome browser console, which had
already been discovered in related work [27].

Concluding for RQ3, adding CSP into non-security API
documentation significantly improved the security of the so-
lutions. It also helped participants to configure CSP until the
moment of integrating it into the framework. Our approach
could not compensate for all problems that prevented par-
ticipants from implementing a working and secure solution.
Thus, service providers can help software developers to
define CSPs by providing additional information in their
documentation. Other aspects like the CSP integration into
a specific web development framework or the usability of
CSP warning messages in browsers lie outside their direct
sphere of influence.

6 LIMITATIONS

The results of the study are subject to several limitations,
which we describe in the following.

First, we recruited a student sample. Since having lit-
tle programming experience, we assume that students are
precisely the group that could benefit most of good docu-
mentation [82]. The participants took a course in web devel-
opment, most were near the end of their studies, and some
have already worked as software developers (cf. Section 5).
Some of the participants had already gained experience in
web development before the course. Our sample neverthe-
less has a narrow range of programming experience and oc-
curring experience levels have been comparably distributed
among the groups. We did not find a significant correlation
between secure task solutions and programming experience.

However, the population of this study is not representa-
tive for all web developers. Previous studies could not find
significant differences between student samples and profes-
sional developers [11], [83], [84]. They found that neither
professional developers nor students are sufficiently famil-
iar with security concepts like cryptography and password
storage to be able to apply them securely. Nevertheless, in
the context of our study, we assume that experienced devel-
opers would have had fewer problems with configuring a
CSP in the framework and therefore would have been able
to use the support of the documentation more effectively.
We observed that the behavior of our participants solving
programming problems varied widely (cf. Section 5.3).

The methodological strength of the presented laboratory
study lies, particularly in the qualitative results. The small
sample size of the groups limits the statistical power of
the presented quantitative results by nature. However, the
statistical results coherently substantiate and support the
qualitative results.

We used a specific software development scenario for
our lab study (cf. Section 4). The results are, therefore, only
conditionally transferable to other software development

contexts. API documentation, in general, also has many
different forms. Therefore, this study uses the real and well-
maintained documentation web page of the popular Google
Maps JavaScript API as a baseline and starting point for
studying the integration of security-relevant CSP informa-
tion in non-security API documentation. Nevertheless, the
structure and content are not representative for all API
documentations. Furthermore, CSPs are only one specific
security mechanism to reduce security risks in web de-
velopment [7]. Thus, the effectiveness and generalizability
of the tested approach can only be shown by follow-up
studies. Future work should consider other documentation
types, security measures, and software engineering contexts,
like auto-generated API documentation (e.g., Javadoc), or
mobile development documentation (e.g., Android).

We used a Go software development environment to
run the experiments, which has some technical limitations.
In this study, we refer to CSP level 2 features to mitigate
XSS attacks, as browsers offer only incomplete support for
level 3 features [85], [86], [87], [88]. Therefore, we did not
consider CSP level 3 security features [21], [35] for the CSP
example in our prototypes. However, the basic approach
of providing a developer with API tailored CSPs does not
change by considering additional CSP features, like click-
jacking mitigation. Additionally, we used a local web server
as an embedded part of the framework. Thus, we excluded
another potential source of error. Under real circumstances,
standalone web servers may also set HTTP headers. How to
support developers in even more complex scenarios is left
for future work.

The documentation was written in English even though
most of the test persons were German native speakers. This
situation is realistic since software development documen-
tation is typically written in English, and translations are
usually not available. For example, the Google Maps API
documentation used in this study is only available in En-
glish. While The students’ study curriculum requires a basic
knowledge of the English language, a subject’s language
comprehension may impact the performance.

Finally, participants could not find the contents that we
added into our prototypes by a search engine. However,
we assume that depending on search queries, a search
engine could have improved the discoverability of the CSP
documentation.

7 DISCUSSION

Based on our results, we discuss recommendations ad-
dressing practitioners such as API service providers who
are in charge of API documentation creation and design.
Further, we illustrate future work that researchers should
investigate.

7.1 Recommendations

API providers have an unique responsibility for their users
since they can provide high quality and trustworthy first-
hand information. Thus, they can supply software devel-
opers directly with secure CSPs for their service. Instead of
imposing a reverse engineering approach on their API users,
i.e., they have to build a CSP following the try and error

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

principle, API providers could proactively provide CSPs
tailored for their services.

Based on the results of this work, we recommend to
follow our approach of adding CSP, including examples,
into the API documentation. We suggest two ways to im-
plement this approach: The security-relevant information
should clearly be stated in the documentation’s content
structure (group STEP4). As an alternative, the developer
should be made aware of necessary secondary tasks via a
code comment (group CODE-COMMENT). If API providers
specify a CSP for their services, we also assume a positive
training effect for their users. Developers, whether young
or experienced, would repeatedly deal with CSPs. This can
increase the attention of developers for CSPs over a short
time. At the same time, this can illustrate very clearly
how secure CSPs have to be structured and implemented.
Educators could use these application-oriented examples in
their lessons. Search engines would also be able to display
more suitable solutions to configuration problems. Secure
examples could reduce visibility of the numerous existing
tutorials on circumventing the CSP security mechanism.
More documentation would allow best practices to evolve
and may potentially gain secure CSP usage on more web-
sites.

7.2 Future Work
We see several relevant work which should be addressed
by researchers in future. First, a quantitative follow-up
study should supplement the presented qualitative labo-
ratory study to further evaluate if the identified styles to
integrate CSP templates into non-security API documen-
tation can effectively support developers in implementing
security best practices. Furthermore, it is interesting future
work to quantify how much cross-cutting concerns, such as
security, are currently taken into account by non-security
API documentation.

If the proposed approaches would become established in
practice, hopefully leading to increasing secure CSP usage,
future work should also find effective ways to support soft-
ware developers in emerging issues like frequent merging
CSPs from different providers. As web services frequently
change over time, API users need to adjust their policies
several times a month [35]. Also during this study, we had
to modify the example CSP once. API producers could
provide their users with up-to-date CSP examples as a
valid reference for action. Here, we assume potential to
extend the CSP standard. CSP examples are not limited to
written documentation. They can also be made available
by an API supporting automated processing. Researchers
should investigate suitable interaction designs of semi-
automated routines merging multiple CSPs and helping to
compile policies. Further research could adopt such tools
for teaching and evaluate whether these can help students
understanding CSP configuration.

Facing automation, we see also challenges in maintain-
ability. Following, e.g., the security principle “least common
mechanism” [89] strictly by listing those specific endpoints
that are explicitly needed instead of bundling full hosts
would lead to whitelists with many entries. Another open
challenge are CSP constellations in which the technical char-
acteristics of individual providers impair the effectiveness

of an entire CSP, e.g., by JSONP endpoints [25]. In such a
case, we recommend to clearly state or even warn in the
documentation or via tool dialogues, that if a user will
implement the service it could break the customer’s CSP
security measure. In the long run, prominent placement
in the API documentation may no longer be necessary.
Empirical studies should evaluate if software developers
would usually expect service providers to indicate the CSPs
in a suitable and maybe standardized location.

Based on the interviews we also see potential to further
investigate how documentation can better support develop-
ers to achieve a profound understanding during the imple-
mentation of CSPs. It can also be important to investigate
the developers’ confidence in their result after implemen-
tation. Besides CSP documentation, it is also important to
examine and improve other tools involved (cf. Section 5.3).
These tools can be, for instance, CSP warning messages in
browser consoles and web development frameworks. Also,
security defaults are difficult for developers to understand.
Getting an idea of a web development framework’s security
concepts and procedures is not easy, either. It is challeng-
ing to inform developers in a quick and transparent way
about reliable security support in the background and the
mechanisms needed to adapt. On the one hand, these mech-
anisms should still work securely for their requirements.
On the other hand, these should not get developers in the
way. Moreover, it must be apparent which security services
developers have to take care of themselves.

Beyond CSPs, which we examined as a concrete use
case in this study, it is vital to explore the integration of
security-relevant information into non-security API docu-
mentation, also concerning further security mechanisms.
This information is necessary to ensure that developers will
get sufficient support from API producers to apply API
specific security characteristics. We assume this approach
will help to increase attention for the existing variety of
secure development practices in web development.

8 CONCLUSION

A basic contribution of the presented eye-tracking labo-
ratory study is that it reconfirms the relevance of offi-
cial API documentation [17] and carefully designed code
examples [9], [10], [37] for secure software development.
Our results show that developers’ visual attention to API
documentation strongly focuses on code examples and that
in the specific case of CSP the integration of security-
relevant information into non-security API documentation
can support inexperienced software developers in applying
secure coding practices successfully.

Here, we found evidence that the novel approach of
integrating CSP examples significantly helps developers to
configure this particular security mechanism in a secure
way. The feedback from our participants also confirms the
assumptions of previous studies about the lack of usability
in practice. Current practices can overwhelm developers
by missing to mediate a basic understanding of what a
CSP mechanism is meant to do. Outside the scope of our
experiment, we believe that the approach could partially
contribute to improving security. However, we are eager to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

design and conduct a field study to obtain more evidence
on whether this assumption holds true or not.

Furthermore, our work substantiates the knowledge
about developers’ behavior when reading JavaScript API
documentation and contribute an initial understanding of
integrating security-relevant information into non-security
API documentation. Our participants mostly skimmed the
documentation while searching for a quick solution to their
programming task. Thus, We found that the location where
security-related CSP examples are placed in non-security
API documentation significantly impacts the time it takes to
find this information. In particular, the study results showed
that the proximity to functional-related code examples in
documentation is a decisive factor for secure CSP implemen-
tations. We conclude that security-relevant CSP examples
and information should place close to API examples to
be better recognized by developers. Code comments have
proven to be very helpful in pointing developers to security-
relevant information locating elsewhere in the documen-
tation. More general conclusions on the effectiveness of
security-relevant information in the context of other secu-
rity mechanisms and documentation types require further
research.

If we pursue the goal of supporting developers in the
technical protection of software systems, we should ur-
gently gain knowledge about how security-relevant infor-
mation can be reliably transported to developers. Neuralgic
locations like official API documentation should provide
security awareness and usable support during software
development. Therefore, we see particular opportunities for
API providers using our findings to assist developers in
securely integrating their provided APIs and, in the end,
improving the data protection of end-users.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for providing valuable feedback; and all participants of this
study for their participation. This work has been partially
funded by the German Federal Ministry of Education and
Research within the funding program "Forschung an Fach-
hochschulen" (contract no. 13FH016IX6).

REFERENCES

[1] Evans Data Corporation, “Worldwide Professional Developer
Population of 24 Million Projected to Grow amid Shift-
ing Geographical Concentrations,” Website. URL: https://
evansdata.com/press/viewRelease.php?pressID=278 (visited on
12/04/2021), EDC, Tech. Rep., 5 2019.

[2] A. Dayaratna, “IDC’s Worldwide Developer Census, 2018: Part-
Time Developers Lead the Expansion of the Global Developer
Population,” Website. URL: https://web.archive.org/web/
20200117065523/https://www.idc.com/getdoc.jsp?containerId=
US44363318 (visited on 12/04/2021), International Data
Corporation, Tech. Rep., 10 2018.

[3] International Telecommunication Union (ITU), “Measuring
digital development - facts and figures 2019,” Document.
URL: https://www.itu.int/en/ITU-D/Statistics/Documents/
facts/FactsFigures2019.pdf (visited on 12/04/2021), 2019.

[4] H. Assal and S. Chiasson, “Security in the software development
lifecycle,” in Fourteenth Symposium on Usable Privacy and Security,
ser. SOUPS. Baltimore, MD: USENIX Association, Aug. 2018, pp.
281–296.

[5] The European Parliament and the Council of the European Union,
“Regulation (eu) 2016/679 of the european parliament and of
the council of 27 april 2016 on the protection of natural persons
with regard to the processing of personal data and on the free
movement of such data, and repealing directive 95/46/ec (general
data protection regulation),” Official Journal of the European Union
, L119/1. URL: http://data.europa.eu/eli/reg/2016/679/oj (vis-
ited on 12/04/2021), 2016.

[6] OWASP, “API Security Top 10 2019,” Website. URL: https://
owasp.org/www-project-api-security/ (visited on 12/04/2021),
The Open Web Application Security Project, 2019.

[7] ——, “OWASP top 10 - 2017 - the ten most critical web application
security risks,” Website. URL: https://www.owasp.org/index.
php/Category:OWASP_Top_Ten_Project (visited on 12/04/2021),
The Open Web Application Security Project, 2017.

[8] M. Green and M. Smith, “Developers are not the enemy!: The need
for usable security apis,” IEEE Security & Privacy, vol. 14, no. 5, pp.
40–46, Sep. 2016.

[9] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “‘Jumping Through
Hoops’: Why do Java Developers Struggle With Cryptography
APIs?” in 38th International Conference on Software Engineering, ser.
ICSE. Austin, Texas: ACM, 2016, pp. 935–946.

[10] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek,
and C. Stransky, “Comparing the usability of cryptographic APIs,”
in 2017 IEEE Symposium on Security and Privacy, ser. SP. San Jose,
CA, USA: IEEE, 2017, pp. 154–171.

[11] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand,
and M. Smith, “Why do developers get password storage wrong?:
A qualitative usability study,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS. Dallas, Texas, USA: ACM, 2017, pp. 311–328.

[12] P. L. Gorski, L. L. Iacono, D. Wermke, C. Stransky, S. Möller,
Y. Acar, and S. Fahl, “Developers deserve security warnings, too:
On the effect of integrated security advice on cryptographic API
misuse,” in Fourteenth Symposium on Usable Privacy and Security,
ser. SOUPS. Baltimore, MD: USENIX Association, Aug. 2018, pp.
265–281.

[13] J. Smith, L. Nguyen Quang Do, and E. Murphy-Hill, “Why can’t
johnny fix vulnerabilities: A usability evaluation of static analysis
tools for security,” in Sixteenth Symposium on Usable Privacy and
Security, ser. SOUPS. USENIX Association, Aug. 2020.

[14] M. Christakis and C. Bird, “What developers want and need
from program analysis: An empirical study,” in 31st IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE.
New York, NY, USA: ACM, 2016, pp. 332–343.

[15] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?”
in Proceedings of the 35th International Conference on Software En-
gineering, ser. ICSE. San Francisco, CA, USA: IEEE, 2013, pp.
672–681.

[16] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and
S. Fahl, “Developers need support, too: A survey of security advice
for software developers,” in 2017 IEEE Cybersecurity Development,
ser. SecDev, Sep. 2017, pp. 22–26.

[17] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stran-
sky, “You get where you’re looking for: The impact of information
sources on code security,” in 2016 IEEE Symposium on Security and
Privacy, ser. S&P. San Jose, CA, USA: IEEE, May 2016, pp. 289–
305.

[18] W. Bai, O. Akgul, and M. L. Mazurek, “A qualitative investigation
of insecure code propagation from online forums,” in 2019 IEEE
Cybersecurity Development, ser. SecDev. Tysons Corner, VA, USA:
IEEE, 2019, pp. 34–48.

[19] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethink-
ing ssl development in an appified world,” in Proceedings of the
2013 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’13. ACM, 2013, pp. 49–60.

[20] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden,
F. Göpfert, F. Günther, C. Weinert, D. Demmler, and R. Kamath,
“Cognicrypt: Supporting developers in using cryptography,” in
Proceedings of the 32nd IEEE/ACM International Conference on Au-
tomated Software Engineering, ser. ASE. Urbana-Champaign, IL,
USA: IEEE, 2017, pp. 931–936.

[21] World Wide Web Consortium (W3C), “Content security policy
level 3,” W3C Working Draft. URL: https://www.w3.org/TR/
CSP3/ (visited on 12/04/2021), 10 2018.

https://evansdata.com/press/viewRelease.php?pressID=278
https://evansdata.com/press/viewRelease.php?pressID=278
https://web.archive.org/web/20200117065523/https://www.idc.com/getdoc.jsp?containerId=US44363318
https://web.archive.org/web/20200117065523/https://www.idc.com/getdoc.jsp?containerId=US44363318
https://web.archive.org/web/20200117065523/https://www.idc.com/getdoc.jsp?containerId=US44363318
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2019.pdf
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2019.pdf
http://data.europa.eu/eli/reg/2016/679/oj
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/CSP3/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

[22] OWASP, “Cross site scripting (xss),” Website. URL: https:
//owasp.org/www-community/attacks/xss/ (visited on
12/04/2021), 2020.

[23] M. Weissbacher, T. Lauinger, and W. Robertson, “Why is csp fail-
ing? trends and challenges in csp adoption,” in Research in Attacks,
Intrusions and Defenses, A. Stavrou, H. Bos, and G. Portokalidis,
Eds. Cham: Springer International Publishing, 2014, pp. 212–233.

[24] K. Patil and F. Braun, “A measurement study of the content
security policy on real-world applications,” International Journal
of Network Security, vol. 18, no. 2, pp. 383–392, Mar. 2016.

[25] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc, “Csp is
dead, long live csp! on the insecurity of whitelists and the future
of content security policy,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: ACM, 2016, pp. 1376–1387.

[26] S. Calzavara, A. Rabitti, and M. Bugliesi, “Semantics-based anal-
ysis of content security policy deployment,” ACM Trans. Web,
vol. 12, no. 2, pp. 10:1–10:36, Jan. 2018.

[27] P. L. Gorski, L. Lo Iacono, and S. Wiefling, “Warn if secure or
how to deal with security by default in software development?” in
The Twelfth International Symposium on Human Aspects of Information
Security & Assurance, ser. HAISA, 2018.

[28] Playframework, “Playframework - Content Security Pol-
icy Filter,” Website. URL: https://github.com/playframework/
playframework/pull/8242 (visited on 12/04/2021), 2018.

[29] Stack Overflow, “2020 developer survey,” Website. URL: https://
insights.stackoverflow.com/survey/2020 (visited on 12/04/2021),
2020.

[30] K. Mindermann, P. Keck, and S. Wagner, “How usable are rust
cryptography apis?” in 2018 IEEE International Conference on Soft-
ware Quality, Reliability and Security, ser. QRS, Lisbon, Portugal,
2018, pp. 143–154.

[31] R. Balebako and L. Cranor, “Improving app privacy: Nudging app
developers to protect user privacy,” IEEE Security Privacy, vol. 12,
no. 4, pp. 55–58, 2014.

[32] G. Uddin and M. P. Robillard, “How api documentation fails,”
IEEE Software, vol. 32, no. 4, pp. 68–75, July 2015.

[33] L. L. Iacono and P. L. Gorski, “I do and i understand. not yet true
for security apis. so sad,” in Second European Workshop on Usable
Security, ser. EuroUSEC. Paris, France: Internet Society, 2017, pp.
1–11.

[34] ProgrammableWeb, “Apis show faster growth rate in 2019 than
previous years,” Website. URL: https://www.programmableweb.
com/news/apis-show-faster-growth-rate-2019-previous-years/
research/2019/07/17 (visited on 12/04/2021), 2019.

[35] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock,
“Complex security policy? a longitudinal analysis of deployed
content security policies,” in The Network and Distributed System
Security Symposium, ser. NDSS, 2020.

[36] S. Calzavara, A. Rabitti, and M. Bugliesi, “Content security prob-
lems?: Evaluating the effectiveness of content security policy in
the wild,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS. New York, NY,
USA: ACM, 2016, pp. 1365–1375.

[37] C. Wijayarathna and N. A. G. Arachchilage, “Why johnny can’t
store passwords securely? a usability evaluation of bouncycastle
password hashing,” in Proceedings of the 22nd International Confer-
ence on Evaluation and Assessment in Software Engineering 2018, ser.
EASE. ACM, 2018, p. 205–210.

[38] S. Stamm, B. Sterne, and G. Markham, “Reining in the web with
content security policy,” in Proceedings of the 19th International
Conference on World Wide Web, ser. WWW. New York, NY, USA:
ACM, 2010, pp. 921–930.

[39] C. Cimpanu, “Hackers are collecting payment details, user
passwords from thousands of sites - Servers of at least seven
companies compromised to deliver malicious code to thousands
of sites.” Website. URL: https://www.zdnet.com/article/hackers-
are-collecting-payment-details-user-passwords-from-4600-sites/
(visited on 12/04/2021), ZDNet, 2019.

[40] OWASP, “Clickjacking,” Website. URL: https://owasp.org/www-
community/attacks/Clickjacking (visited on 12/04/2021), The
Open Web Application Security Project, 2020.

[41] M. West and J. Medley, “Content Security Policy,” Web-
site. URL: https://developers.google.com/web/fundamentals/
security/csp/ (visited on 12/04/2021), 2019.

[42] K. Patil, T. Vyas, F. Braun, M. Goodwin, and Z. Liang, “Poster:
Usercsp-user specified content security policies,” in In the proceed-

ings of the Symposium On Usable Privacy and Security, ser. SOUPS,
2013.

[43] S. Inzunza, R. Juárez-Ramírez, and S. Jiménez, “Api documenta-
tion,” in Trends and Advances in Information Systems and Technologies,
Á. Rocha, H. Adeli, L. P. Reis, and S. Costanzo, Eds. Cham:
Springer International Publishing, 2018, pp. 229–239.

[44] M. Meng, S. Steinhardt, and A. Schubert, “Application pro-
gramming interface documentation: What do software developers
want?” Journal of Technical Writing and Communication, vol. 48,
no. 3, pp. 295–330, 2018.

[45] ——, “How Developers Use API Documentation: An Observation
Study,” Commun. Des. Q. Rev, vol. 7, no. 2, p. 40–49, Aug. 2019.

[46] K. Mindermann and S. Wagner, “Usability and Security Effects of
Code Examples on Crypto APIs,” in 2018 16th Annual Conference
on Privacy, Security and Trust, ser. PST, Aug 2018, pp. 1–2.

[47] Stack Exchange, “Welcome to information security stack
exchange,” 2021. [Online]. Available: https://security.
stackexchange.com/tour

[48] Z. Sharafi, Z. Soh, and Y.-G. Guéhéneuc, “A systematic literature
review on the usage of eye-tracking in software engineering,”
Information and Software Technology, vol. 67, pp. 79–107, 2015.

[49] J. Ross, “Eyetracking: Is it worth it?” UXmatters Online Ar-
ticle URL: https://www.uxmatters.com/mt/archives/2009/10/
eyetracking-is-it-worth-it.php/ (visited on 12/04/2021), 10 2009.

[50] Z. Sharafi, T. Shaffer, B. Sharif, and Y. Guéhéneuc, “Eye-tracking
metrics in software engineering,” in 2015 Asia-Pacific Software
Engineering Conference, ser. APSEC, 2015, pp. 96–103.

[51] F. Hauser, J. Mottok, and H. Gruber, “Eye tracking metrics in
software engineering,” in Proceedings of the 3rd European Conference
of Software Engineering Education, ser. ECSEE. New York, NY, USA:
Association for Computing Machinery, 2018, p. 39–44.

[52] Z. Sharafi, B. Sharif, Y.-G. Guéhéneuc, A. Begel, R. Bednarik, and
M. Crosby, “A practical guide on conducting eye tracking studies
in software engineering,” Empirical Software Engineering, vol. 25,
no. 5, pp. 3128–3174, Sep. 2020.

[53] R. Turner, M. Falcone, B. Sharif, and A. Lazar, “An eye-tracking
study assessing the comprehension of c++ and python source
code,” in Proceedings of the Symposium on Eye Tracking Research and
Applications, ser. ETRA ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 231–234.

[54] B. Sharif, M. Falcone, and J. I. Maletic, “An eye-tracking study on
the role of scan time in finding source code defects,” in Proceedings
of the Symposium on Eye Tracking Research and Applications, ser.
ETRA ’12. New York, NY, USA: Association for Computing
Machinery, 2012, p. 381–384.

[55] B. Sharif and J. I. Maletic, “An eye tracking study on camelcase
and under_score identifier styles,” in 2010 IEEE 18th International
Conference on Program Comprehension, 2010, pp. 196–205.

[56] Z. Sharafi, Z. Soh, Y.-G. Guéhéneuc, and G. Antoniol, “Women
and men — different but equal: On the impact of identifier style
on source code reading,” in 2012 20th IEEE International Conference
on Program Comprehension (ICPC), 2012, pp. 27–36.

[57] T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. R. Murphy-Hill,
and C. Parnin, “Do developers read compiler error messages,” in
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing (ICSE), 2017, pp. 575–585.

[58] M. Crosby and J. Stelovsky, “How do we read algorithms? a case
study,” Computer, vol. 23, no. 1, pp. 25–35, 1990.

[59] M. E. Crosby, J. Scholtz, and S. Wiedenbeck, “The roles beacons
play in comprehension for novice and expert programmers,”
in Programmers, 14th Workshop of the Psychology of Programming
Interest Group, Brunel University, 2002, pp. 18–21.

[60] H. Uwano, M. Nakamura, A. Monden, and K.-i. Matsumoto,
“Analyzing individual performance of source code review using
reviewers’ eye movement,” in Proceedings of the 2006 Symposium
on Eye Tracking Research & Applications, ser. ETRA ’06. New York,
NY, USA: Association for Computing Machinery, 2006, p. 133–140.

[61] M. A. Just and P. A. Carpenter, “A theory of reading: from eye
fixations to comprehension,” Psychological Review, vol. 87, no. 4,
1980.

[62] R. Bednarik and M. Tukiainen, “Effects of display blurring on the
behavior of novices and experts during program debugging,” in
CHI ’05 Extended Abstracts on Human Factors in Computing Systems,
ser. CHI EA ’05. New York, NY, USA: Association for Computing
Machinery, 2005, p. 1204–1207.

[63] ——, “An eye-tracking methodology for characterizing program
comprehension processes,” in Proceedings of the 2006 Symposium on

https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://github.com/playframework/playframework/pull/8242
https://github.com/playframework/playframework/pull/8242
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.zdnet.com/article/hackers-are-collecting-payment-details-user-passwords-from-4600-sites/
https://www.zdnet.com/article/hackers-are-collecting-payment-details-user-passwords-from-4600-sites/
https://owasp.org/www-community/attacks/Clickjacking
https://owasp.org/www-community/attacks/Clickjacking
https://developers.google.com/web/fundamentals/security/csp/
https://developers.google.com/web/fundamentals/security/csp/
https://security.stackexchange.com/tour
https://security.stackexchange.com/tour
https://www.uxmatters.com/mt/archives/2009/10/eyetracking-is-it-worth-it.php/
https://www.uxmatters.com/mt/archives/2009/10/eyetracking-is-it-worth-it.php/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

Eye Tracking Research & Applications, ser. ETRA ’06. New York,
NY, USA: Association for Computing Machinery, 2006, p. 125–132.

[64] S. Jeanmart, Y.-G. Gueheneuc, H. Sahraoui, and N. Habra, “Impact
of the visitor pattern on program comprehension and mainte-
nance,” in Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement, ser. ESEM ’09.
USA: IEEE Computer Society, 2009, p. 69–78.

[65] G. Cepeda Porras and Y.-G. Guéhéneuc, “An empirical study on
the efficiency of different design pattern representations in UML
class diagrams,” Empirical Software Engineering, vol. 15, no. 5, pp.
493–522, Oct. 2010.

[66] T. Busjahn, C. Schulte, and A. Busjahn, “Analysis of code reading
to gain more insight in program comprehension,” in Proceedings of
the 11th Koli Calling International Conference on Computing Education
Research, ser. Koli Calling ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 1–9.

[67] R. Bednarik, “Expertise-dependent visual attention strategies de-
velop over time during debugging with multiple code represen-
tations,” International Journal of Human-Computer Studies, vol. 70,
no. 2, pp. 143–155, 2012.

[68] Z. Soh, Z. Sharafi, B. V. den Plas, G. Porras, Y. Gueheneuc, and
G. Antoniol, “Professional status and expertise for uml class
diagram comprehension: An empirical study,” in International
Conference on Program Comprehension. Los Alamitos, CA, USA:
IEEE Computer Society, jun 2012, pp. 163–172.

[69] Z. Sharafi, Z. Soh, Y.-G. Guéhéneuc, and G. Antoniol, “Women
and men — different but equal: On the impact of identifier style
on source code reading,” in 2012 20th IEEE International Conference
on Program Comprehension (ICPC), 2012, pp. 27–36.

[70] Z. Sharafi, A. Marchetto, A. Susi, G. Antoniol, and Y.-G.
Guéhéneuc, “An empirical study on the efficiency of graphical vs.
textual representations in requirements comprehension,” in 2013
21st International Conference on Program Comprehension (ICPC), 2013,
pp. 33–42.

[71] R. Petrusel and J. Mendling, “Eye-tracking the factors of process
model comprehension tasks,” in Proceedings of the 25th Interna-
tional Conference on Advanced Information Systems Engineering, ser.
CAiSE’13. Berlin, Heidelberg: Springer-Verlag, 2013, p. 224–239.

[72] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and
B. Sharif, “The impact of identifier style on effort and compre-
hension,” Empirical Softw. Engg., vol. 18, no. 2, p. 219–276, Apr.
2013.

[73] N. E. Cagiltay, G. Tokdemir, O. Kilic, and D. Topalli, “Perform-
ing and analyzing non-formal inspections of entity relationship
diagram (erd),” Journal of Systems and Software, vol. 86, no. 8, pp.
2184–2195, 2013.

[74] B. De Smet, L. Lempereur, Z. Sharafi, Y.-G. Guéhéneuc, G. An-
toniol, and N. Habra, “Taupe: Visualizing and analyzing eye-
tracking data,” Science of Computer Programming, vol. 79, pp. 260–
278, 2014, experimental Software and Toolkits (EST 4): A special
issue of the Workshop on Academic Software Development Tools
and Techniques (WASDeTT-3 2010).

[75] Google, “Adding a google map with a marker to your
website,” Website. URL: https://developers.google.com/maps/
documentation/javascript/adding-a-google-map (visited on
12/04/2021), 2019.

[76] ——, “Adding a google map with a marker to your website,” Web-
site. URL: https://web.archive.org/web/20190715140525/https:
//developers.google.com/maps/documentation/javascript/
adding-a-google-map (visited on 12/04/2021), 2019.

[77] A. Tversky and D. Kahneman, “The framing of decisions and the
psychology of choice,” Science, vol. 211, no. 4481, pp. 453–458,
1981.

[78] Go, “The go programming language,” Website. URL: https://
golang.org/ (visited on 12/04/2021), 2020.

[79] A. Naiakshina, A. Danilova, C. Tiefenau, and M. Smith, “De-
ception task design in developer password studies: Exploring a
student sample,” in Fourteenth Symposium on Usable Privacy and
Security, ser. SOUPS. Baltimore, MD: USENIX Association, Aug.
2018, pp. 297–313.

[80] G. E. Krasner and S. T. Pope, “A cookbook for using the model-
view controller user interface paradigm in smalltalk-80,” J. Object
Oriented Program., vol. 1, no. 3, p. 26–49, Aug. 1988.

[81] C. Jacobsen, “Secure - http middleware for go that facilitates
some quick security wins,” Website. URL: https://github.com/
unrolled/secure (visited on 12/04/2021), 2020.

[82] M. Tahaei, A. Jenkins, K. Vaniea, and M. K. Wolters, “‘i don’t know
too much about it’: On the security mindsets of computer science
students,” in 9th International Workshop on Socio-Technical Aspects
in Security and Trust, ser. STAST. Luxembourg City, Luxembourg:
Springer International Publishing, 2019.

[83] Y. Acar, C. Stransky, D. Wermke, M. L. Mazurek, and S. Fahl,
“Security developer studies with github users: Exploring a con-
venience sample,” in Thirteenth Symposium on Usable Privacy and
Security, ser. SOUPS. Santa Clara, CA, USA: USENIX Association,
2017, pp. 81–95.

[84] A. Naiakshina, A. Danilova, E. Gerlitz, E. von Zezschwitz, and
M. Smith, ““if you want, i can store the encrypted password”: A
password-storage field study with freelance developers,” in Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, ser. CHI. ACM, 2019.

[85] MDN Web Docs, “Content-Security-Policy - Browser
compatibility,” Website. URL: https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/Content-Security-
Policy#Browser_compatibility (visited on 12/04/2021), Mozilla,
2019.

[86] Google, “Chrome Platform Status,” Website. URL: https://www.
chromestatus.com/features#csp (visited on 12/04/2021), 2019.

[87] A. Deveria, “Can I use content security policy?” Web-
site. URL: https://caniuse.com/#search=content%20security%
20policy (visited on 12/04/2021), Can I use, 2019.

[88] Apple, “Documentation Archive - What’s New in Safari - Safari
10.0,” Website. URL: https://developer.apple.com/library/
archive/releasenotes/General/WhatsNewInSafari/Articles/
Safari_10_0.html#//apple_ref/doc/uid/TP40014305-CH11-SW1
(visited on 12/04/2021), 2018.

[89] J. H. Saltzer and M. D. Schroeder, “The protection of information
in computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp.
1278–1308, Sept 1975.

https://developers.google.com/maps/documentation/javascript/adding-a-google-map
https://developers.google.com/maps/documentation/javascript/adding-a-google-map
https://web.archive.org/web/20190715140525/https://developers.google.com/maps/documentation/javascript/adding-a-google-map
https://web.archive.org/web/20190715140525/https://developers.google.com/maps/documentation/javascript/adding-a-google-map
https://web.archive.org/web/20190715140525/https://developers.google.com/maps/documentation/javascript/adding-a-google-map
https://golang.org/
https://golang.org/
https://github.com/unrolled/secure
https://github.com/unrolled/secure
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy#Browser_compatibility
https://www.chromestatus.com/features#csp
https://www.chromestatus.com/features#csp
https://caniuse.com/#search=content%20security%20policy
https://caniuse.com/#search=content%20security%20policy
https://developer.apple.com/library/archive/releasenotes/General/WhatsNewInSafari/Articles/Safari_10_0.html#//apple_ref/doc/uid/TP40014305-CH11-SW1
https://developer.apple.com/library/archive/releasenotes/General/WhatsNewInSafari/Articles/Safari_10_0.html#//apple_ref/doc/uid/TP40014305-CH11-SW1
https://developer.apple.com/library/archive/releasenotes/General/WhatsNewInSafari/Articles/Safari_10_0.html#//apple_ref/doc/uid/TP40014305-CH11-SW1

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

Peter Leo Gorski is a Ph.D. candidate at TU
Berlin and senior researcher of the Data and
Application Security Group (DAS) at H-BRS Uni-
versity of Applied Sciences in Sankt Augustin,
Germany. He has been researching the Usability
of Security APIs since 2015. In his work, he
focuses on information flows between API pro-
ducers and API consumers.

Sebastian Möller received the Electrical Engi-
neering degree from the University of Bochum,
Germany, University of Orléans, France, and
University of Bologna, Italy, and the Doctor-of-
Engineering degree in 1999, with a book on the
Assessment and Prediction of Speech Quality
in Telecommunications, and the Venia Legendi
with a book on the Quality of Telephone-Based
Spoken Dialogue Systems in 2004. In 2005, he
joined Telekom Innovation Laboratories and in
2007, he was appointed as a Full Professor of

quality and usability with TU Berlin. In addition, he is a Scientific Direc-
tor with the German Research Center for Artificial Intelligence (DFKI),
Berlin, and an Adjunct Professor with the University of Technology Syd-
ney. Since 1997, he has taken part in ITU–T Study Group 12, where he
is currently a Co-Rapporteur of Question Q.15/12. His primary interests
are in speech and multimedia quality, speech and language technology,
user experience, usable security and privacy, as well as crowdsourcing.

Stephan Wiefling is a research associate of the
Data and Application Security Group (DAS) at H-
BRS University of Applied Sciences in Sankt Au-
gustin, Germany. He is also a PhD student at the
Horst Görtz Institute for IT Security (HGI) of Ruhr
University Bochum in Bochum, Germany. His
current research spans several areas in the field
of usable security, including topics of developer-
centered security and risk-based authentication.

Luigi Lo Iacono leads the Data and Applica-
tion Security Group (DAS) at H-BRS University
of Applied Sciences in Sankt Augustin, Ger-
many. His research interests include security-
and privacy-enhancing technologies with a spe-
cific focus on developer-centered security and
privacy cockpits.

	Introduction
	Content Security Policy (CSP)
	Related Work
	Usability of CSP
	Security in API Documentation
	Eye-Tracking in Software Engineering Research

	Methodology
	Documentation and Study Conditions
	Preliminary Discussion and Ethics
	Development Environment Briefing
	Programming Tasks
	Implementation and Study Environment
	Structured Interview
	Debriefing
	Pilot Studies
	Recruiting and Compensation
	Performance Measures

	Analysis
	Information Placement Effects (RQ1)
	Fixation Distribution
	Time to Find CSP Documentation
	Effect of Code Comment and Link

	Areas of Attention (RQ2)
	Programming Task Results (RQ3)
	Time Spent on Tasks
	Functional Task Results
	Functional and Secure Task Results
	CSP Integration Problems

	Limitations
	Discussion
	Recommendations
	Future Work

	Conclusion
	References
	Biographies
	Peter Leo Gorski
	Sebastian Möller
	Stephan Wiefling
	Luigi Lo Iacono

